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Abstract: Given any sequence z = (zn)n≥1 of positive real numbers and any set E of complex
sequences, we write Ez for the set of all sequences y = (yn)n≥1 such that y/z = (yn/zn)n≥1 ∈ E;
in particular, s0

z denotes the set of all sequences y such that y/z tends to zero. Here, we consider

the infinite tridiagonal matrix B̃(r, s, t), obtained from the triangle B(r, s, t), by deleting its first row.
Then we determine the sets of all positive sequences a = (an)n≥1 such that (Ea)B̃(r,s,t)

⊂ Ea, where

E = `∞, c0, or c. These results extend some recent results.

Keywords: matrix transformations; BK space; (SSIE) with operator; triple band matrix

MSC: 40H05, 46A45.

1. Introduction

As usual, we denote by ω the set of all complex sequences y = (yn)n≥1 and by c0, c
and `∞ the subsets of all null, convergent and bounded sequences, respectively. Also let
U+ denote the set of all sequences u = (un)n≥1 with un > 0 for all n. Given a sequence
a ∈ ω and a subset E of ω, Wilansky [1], introduced the notation a−1 ∗ E = {y ∈ ω : ay =

(anyn)n≥1 ∈ E}. We write sa, s0
a and s(c)a for the sets

(
(1/an)n≥1

)−1 ∗ E for any sequence
a ∈ U+ and E ∈ {`∞, c0, c}. In [2], we gathered some results on the (SSIE) and the (SSE),
defined as follows. The sequence spaces inclusion equations (SSIE) and sequence spaces equations
(SSE) with operators are determined by an inclusion or identity each term of which is a sum
or a sum of products of sets of the form (χa)T and

(
χ f (x)

)
T

, where χ is any of the symbols

s, s0, or s(c), a is a given sequence in U+, x is the unknown, f maps U+ to itself and
T is a triangle. In [2], we dealt with the class of (SSIE) of the form F ⊂ Ea + F′x, where
F ∈ {c0, `p, w0, w∞} and E, F′ ∈ {c0, c, `∞, `p, w0, w∞}, (p ≥ 1). In [3], Altay and Başar
defined the generalized operator of the first difference defined by B(r, s)ny = ryn + syn−1
for all n ≥ 2 and B(r, s)1y1 = ry1. Then, these authors dealt with the fine spectrum of the
generalized difference operator B(r, s) over the sequence spaces c0 and c. In [4], Kirişçi
and Başar gave characterizations of the classes

(
EB(r,s), F

)
and

(
EB(r,s), FB(r,s)

)
where E

is any of the spaces `∞, c, c0, `p, or `1 and F is any of the spaces `, c, c0, or `1. In [5],
the authors dealt with the fine spectrum of the generalized difference operator B(r, s) over
the sequence spaces `p and bvp (1 < p < ∞). Then, in 2007 Furkan, Bilgic and Altay [6],
dealt with the spectrum of the operator represented by the triangle
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B(r, s, t) =


r
s r 0
t s r

. . .
0 . . .


over c0 and c. In [7], Bilgic and Furkan dealt with the fine spectrum of B(r, s, t) over
the sequence spaces l1 and bv. Finally, in 2010 Furkan, Bilgic and Başar [8], studied the fine
spectrum of the operator B(r, s, t) over the sequence spaces lp and bvp.

In this paper, we extend some results stated in [9], and we consider the infinite matrix

Λ = B̃(r, s, t) obtained from B(r, s, t) by deleting its first row which is not a triangle, but
an infinite tridiagonal matrix. The main results are stated in Sections 6 and 7, where we
give some new characterizations of the inclusions (χa)B̃(r,s,t)

⊂ χa where χ = s, s0, or s(c).

We extend some results stated in [9] with the study of the cases (1) s = 0 and r, t 6= 0,
(2) r = 0 and s, t 6= 0, and (3) t = 0 and r, s 6= 0. Then, we characterize the set of all positive
sequences a such that

(
s(c)a

)
B̃(r,s,t)

⊂ s(c)a . So, we give some conditions, under which

the condition limn→∞(ryn+1 + syn + tyn−1)/an = l implies limn→∞ yn/an = l′, for all y
and for some scalars l, l′.

This paper is organized as follows. In Section 2, we recall some results on AK and
BK spaces and on the set Sa,b. In Section 3, we consider the operator C(a), and recall
the definitions and properties of the sets Γ̂, Ĉ, Γ and Ĉ1. Then we state some properties
of the set ĉ. In Section 4, we recall the inverse of B(r, s, t). In Section 5, we state some
characterizations of the sets of all positive sequences a such that (χa)B̃(r,s,t)

⊂ χa, where

χ = s, or s0 in the general case. In Section 6, using the sets of the form Ĉα, we give additional
characterizations in each of the cases 1) (χa)B̃(r,s,t)

⊂ χa, with ∆ ≥0. 2) (χa)B̃(r,s,0)
⊂ χa and

(χa)B̃(0,s,t)
⊂ χa, and 3) ∆ <0. Finally, in Section 7, we extend the previous results to the set

Ŝ (c) of all positive sequences a such that
(

s(c)a

)
B̃(r,s,t)

⊂ s(c)a . Then, under some conditions

we give simplifications of the previous set.

2. Notations and Preliminary Results

Let A = (ank)n,k≥1 be an infinite matrix and y = (yk)k≥1 be a sequence. Then, we write

Any =
∞

∑
k=1

ankyk, for any integer n ≥ 1 (1)

and Ay = (Any)n≥1 provided all the series in (1) converge. Let E and F be any subsets
of ω. Then, we write (E, F), (see for instance [10]), for the class of all infinite matrices
A for which the series in (1) converge for all y ∈ E and all n, and Ay ∈ F for all y ∈ E.
So, if A ∈ (E, F) then we are led to the study of the operator Λ = ΛA : E → F defined
by Ay = Λy and we identify the operator Λ to the matrix A. A Banach space E of complex
sequences is said to be a BK space if each projection Pn : E → C defined by Pn(y) = yn
for all y = (yn)n≥1 ∈ E is continuous. A BK space E is said to have AK if every sequence
y = (yk)k≥1 ∈ E has a unique representation y = ∑∞

k=1 yke(k) where e(k) is the sequence
with 1 in the k-th position and 0 otherwise. To simplify the notations, we use the diagonal
matrix Da defined by [Da]nn = an for all n, and write

Da ∗ E = (1/a)−1 ∗ E = {(yn)n≥1 ∈ ω : (yn/an)n≥1 ∈ E},

for any a ∈ U+ and any E ⊂ ω. We may also write the identity Ea = Da ∗ E. Then, we
define sa = Da ∗ `∞, s0

a = Da ∗ c0 and s(c)a = Da ∗ c. Each of the spaces Dα ∗ χ, where
χ ∈ {`∞, c0, c}, is a BK space normed by ‖y‖sa = supn≥1(|yn|/an) and s0

a has AK. Now,
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let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By Sa,b we denote the set of all infinite matrices
Λ = (λnk)n,k≥1 such that ‖Λ‖Sa,b = supn≥1

(
b−1

n ∑∞
k=1 |λnk|ak

)
< ∞. It is well known that

Λ ∈ (sa, sb) if and only if Λ ∈ Sa,b. So, we can write (sa, sb) = Sa,b. When sa = sb we
obtain the Banach algebra with identity Sa,b = Sa, (cf. [2]), normed by ‖Λ‖Sa = ‖Λ‖Sa,a .
We also have Λ ∈ (sa, sa) if and only if Λ ∈ Sa. If a = (rn)n≥1, the sets Sa, sa, s0

a and
s(c)a are denoted by Sr, sr, s0

r and s(c)r , respectively. When r = 1, we obtain s1 = `∞,
s0

1 = c0 and s(c)1 = c, and writing e = (1, 1, ...) we have S1 = Se. It is well known that
(s1, s1) = (c0, s1) = (c, s1) = S1 (see, for instance, [1]). We also have Λ ∈ (c0, c0) if
and only if Λ ∈ S1 and limn→∞ λnk = 0 for k = 1, 2, ...; and Λ ∈ (c, c) if and only if
Λ ∈ S1, limn→∞ ∑∞

k=1 λnk = l and limn→∞ λnk = lk, for some scalars l and lk, k = 1, 2, . . .
In the sequel, we use the next property. Let χ and χ′ be any of the symbols s0, s(c), or s,
then the condition Λ ∈ (χa, χ′b) and D1/bΛDa ∈ (χe, χ′e) are equivalent. For any subset E
of ω, we put ΛE = {η ∈ ω : η = Λy for some y ∈ E}. If F is a subset of ω, then we write
F(Λ) = FΛ = {y ∈ ω : Λy ∈ F} for the matrix domain of Λ in F.

3. The Operators C(a), ∆(a) and the Sets Γ̂, Ĉ, Γ, Ĉ1 and ĉ

An infinite matrix T = (tnk)n,k≥1 is said to be a triangle if tnk = 0 for k > n and
tnn 6= 0 for all n. Now, let U be the set of all sequences (un)n≥1 ∈ ω with un 6= 0 for all n.
If a = (an)n≥1 ∈ U, we define by C(a) the triangle defined by [C(a)]nk = 1/an for k ≤ n,
(see, for instance, [2] (p. 166)). It is easy to see that the triangle ∆(a), whose the nonzero
entries are defined by [∆(a)]nn = an and [∆(a)]n,n−1 = an−1, is the inverse of C(a), that is,
C(a)(∆(a)y) = ∆(a)(C(a)y) = y for all y ∈ ω. If a = e then we obtain ∆(e) = ∆, where
∆ is the well–known operator of the first difference defined by ∆ny = yn − yn−1 for all
y ∈ ω and all n ≥ 1, with the convention y0 = 0. It is usual to write Σ = C(e). We note
that ∆ and Σ are inverse to one another, and ∆, Σ ∈ SR for any R > 1.

To simplify notation, for a ∈ U+, we write cn(a) = a−1
n ∑n

k=1 ak, for all n. We also
consider the sets Ĉ and Ĉ1 of all positive sequences a = (an)n≥1 such that (cn(a))n≥1 ∈ c,
supn cn(a) < ∞, respectively. It is known that, limn→∞ a•n = 1− 1/l holds if and only
if limn→∞ a−1

n ∑n
k=1 ak = l, for some scalar l > 0. In all that follows, we associate with

any positive sequence a the sequence a− defined by [a−]n = an−1 for all n ≥ 1 with
the convention [a−]1 = a0 = 1. We write a• = (a•n)n≥1, where a•n = [a−]n/an and we let
ĉ = {a ∈ U+ : a• ∈ c}. We define by Γ̂ and Γ the sets of all positive sequences such that
limn→∞ a•n < 1 and lim supn→∞ a•n < 1. Finally, by G1 we define the set of all positive
sequences such that an ≥ Cγn, for all n, and for some C > 0 and γ > 1. Note that, if a and
b ∈ Ĉ1, then we have a + b and ab ∈ Ĉ1. It can easily be seen that (Rn)n≥1 ∈ Ĉ1 if and only
if R > 1, and there is no real number α for which the sequence (nα)n≥1 belongs to Ĉ1. It is
known that Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1 ⊂ G1, (cf. [2]). Now, we need the following lemmas.

Lemma 1. We have Ĉ1 ∩ ĉ = Γ̂.

Proof. The inclusion Γ̂ ⊂ Ĉ1 ∩ ĉ is immediate. So, we only need to show the inclusion
Ĉ1 ∩ ĉ ⊂ Γ̂. For this, we assume a /∈ Γ̂, under the condition a ∈ ĉ. Then we have
limn→∞ a•n ≥ 1. So, for any given ε > 0 there is an integer q > 0 such that a•n ≥ 1− ε for all
n ≥ q + 1 and

c2q(a) =
1

a2q

2q

∑
k=1

ak ≥
1

a2q

(
2q

∑
k=q

ak

)
≥

2q−1

∑
k=q

(
ak

ak+1
...

a2q−1

a2q

)
+ 1

≥ (1− ε)q + ... + (1− ε) + 1 =
1− (1− ε)q+1

ε
.
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Then we have

1− (1− ε)q+1

ε
∼ 1− [1− (q + 1)ε]

ε
∼ q + 1 (ε→ 0)

and
(
[C(a)a]2q

)
q

/∈ `∞ which implies a /∈ Ĉ1. So, we have shown Ĉ1 ∩ ĉ ⊂ Γ̂ and Part (ii)

holds. This completes the proof.

Lemma 2. [[2], Theorem 4.2, p.172] for each a ∈ ω we have a ∈ Γ̂ if and only if
(

s(c)a

)
∆

= s(c)a .

Lemma 3. Let a ∈ U+. Then we have: limn→∞ a•n < 1 implies

lim
n→∞

a−1
n

n

∑
k=2

(n− k + 1)ak−1 = l, for some scalar l.

Proof. By Lemma 2, the condition a ∈ Γ̂ implies
(

s(c)a

)
∆
= s(c)a and

(
s(c)a

)
∆2

=
((

s(c)a

)
∆

)
∆
=(

s(c)a

)
∆
⊂ s(c)a . Since

(
s(c)a

)
∆2

= Σ2s(c)a , the condition a ∈ Γ̂ implies D1/aΣ2Da ∈ (c, c). Now,

the matrix D1/aΣ2Da is the triangle defined by
[
D1/aΣ2Da

]
nk = a−1

n (n− k + 1)ak for k ≤ n,
and we conclude that a ∈ Γ̂ implies

lim
n→∞

a−1
n

n

∑
k=1

(n− k + 1)ak = l.

Finally, from the inclusion Γ̂ ⊂ Ĉ1, we obtain

1
an

n

∑
k=2

(n− k + 1)ak−1 =
1
an

n

∑
j=1

(n− j)aj

=
1
an

n−1

∑
j=1

(n− j + 1)aj −
1
an

n−1

∑
j=1

aj = O(1) (n→ ∞).

This concludes the proof.

4. The Inverse of the Triangle B(r, s, t)

In the following, we use the triangle B(r, s, t) which can be considered as the operator
defined by (B(r, s, t)y)1 = ry1, (B(r, s, t)y)2 = ry2 + sy1 and (B(r, s, t)y)n = ryn + syn−1 +
tyn−2 for all n ≥ 3, where r, s, t are real numbers. Throughout this paper, we assume that two
reals among the reals r, s, t are nonzero. We associate with the matrix B(r, s, t) the equation

b(u) = tu2 + su + r = 0. (2)

We denote by u1 and u2 the roots of (2). In the case r, t 6= 0 the roots of (2) are distinct
from zero. We have the following result, where we let ∆= s2 − 4tr, which was stated in [6],
and rewritten in [9].

Lemma 4. [9] Let r, s, t be reals with r, t 6= 0. Then, the inverse of B(r, s, t) is a triangle whose
the nonzero entries are defined for k ≤ n, in the following way.

(i) If ∆ 6= 0 then u1 =
(
−s−

√
∆
)

/2t and u2 =
(
−s +

√
∆
)

/2t are the real or complex roots
of (2) and we have:

a)
(
[B(r, s, t)]−1

)
nk

= −
(

uk−n−1
2 − uk−n−1

1

)
/
√

∆, for ∆ > 0.

b)
(
[B(r, s, t)]−1

)
nk

= i
(

uk−n−1
2 − uk−n−1

1

)
/
√
−∆, for ∆ < 0.
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(ii) If ∆= 0 then u1 = −s/2t, is the double root of (2) and the non-zero entries of the inverse

of B(r, s, t) are defined by
(
[B(r, s, t)]−1

)
nk

= r−1(n− k + 1)uk−n
1 .

(iii) Assume ∆< 0, and let u1 = ρeiθ , be a root of (2). Then, the inverse of B(r, s, t) is the triangle
whose the entries are given by(

[B(r, s, t)]−1
)

nk
=

1
r

sin(n− k + 1)θ
ρn−k sin θ

for k ≤ n.

5. On the Sets Ŝ and Ŝ0

In the following, we use the infinite tridiagonal matrix B̃(r, s, t) obtained from B(r, s, t)

by deleting its first row. For r = 0 the matrix B̃(r, s, t) is the double band matrix denoted
by B(s, t). In this section, we recall the characterizations of the set of all a ∈ U+ such that
(χa)B̃(r,s,t)

⊂ χa, with χ = s, or s0 in the case ∆ 6= 0. Let

Ŝ =

{
a ∈ U+ : (sa)B̃(r,s,t)

⊂ sa

}
and Ŝ0 =

{
a ∈ U+ :

(
s0

a

)
B̃(r,s,t)

⊂ s0
a

}
.

Then we have a ∈ Ŝ if and only if the condition |ryn+1 + syn + tyn−1|/an ≤ K1 implies
|yn|/an ≤ K2 for all y, for all n and for some K1 and K2 > 0. Similarly, we have a ∈ Ŝ0

if and only if the condition (ryn+1 + syn + tyn−1)/an → 0 implies yn/an → 0 (n→ ∞)

for all y. In the following, we recall some results on the characterizations of Ŝ and Ŝ0 stated
in [9]. We begin with the characterizations of Ŝ and Ŝ0 in the case ∆ 6= 0 and we consider
the conditions:

sup
n

(
1
an

n

∑
k=1

∣∣∣uk−n−1
2 − uk−n−1

1

∣∣∣ak−1

)
< ∞ (3)

and

lim
n→∞

1
an

(
uk−n−1

2 − uk−n−1
1

)
ak−1 = 0 (n→ ∞) for k = 1, 2, .... (4)

Using the identity (χa)B̃(r,s,t)
= (χa−)B(r,s,t) for χ = s, or s0, (cf. [9]), we obtain the fol-

lowing proposition, where we assume ∆ 6= 0, the case ∆= 0 is studied in Part (ii) of
Theorem 1.

Proposition 1. [9] Let r, s, t be reals with r, t 6= 0. Assume ∆ 6= 0 and let u1 and u2 be the roots
of (2). Then we have: (i) a ∈ Ŝ if and only if (3) holds. (ii) a ∈ Ŝ0 if and only if (3) and (4) hold.

6. New Characterizations of the Sets Ŝ , or Ŝ0

In the following, we extend some results on the characterizations of Ŝ and Ŝ0 stated
in [9]. For this, we let χ = s, or s0, and we simplify these characterizations using the sets
of the form Ĉα =

[
Ĉ1

]
|α|

, for α 6= 0, in each of the cases (1) (χa)B̃(r,s,t)
⊂ χa, with ∆ ≥0, (2)

(χa)B̃(r,s,0)
⊂ χa and (χa)B̃(0,s,t)

⊂ χa, and (3) ∆ <0.

6.1. Characterizations of (χa)B̃(r,s,t)
⊂ χa where χ = s, or s0 for ∆ ≥0.

For any nonzero real number α, we write

Ĉα = D(|α|n)n≥1
∗ Ĉ1 =

{
a ∈ U+ : sup

n≥1

(
|α|n

an

n

∑
k=1

ak

|α|k

)
< ∞

}
.
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Note that Ĉα = Ĉ|α|. It is trivial that, if a and a′ ∈ Ĉα then we have a + a′ ∈ Ĉα.
We obtain the following extension of the results stated in [9], since we only dealt with
the sets Ŝ and Ŝ0, for ∆> 0, in the case s 6= 0.

Theorem 1. Let r, t 6= 0. Then we have:

(i) Assume ∆> 0 and let u1 6= u2 be the roots of (2). Then

Ŝ = Ŝ0 = Ĉmax(|1/u1|,|1/u2|).

(ii) Assume ∆= 0, and let u1 be the double root of (2). Then Ŝ = Ŝ0 = Ĉ1/|u1|.

Proof. Statement (i) with s 6= 0 and (ii) were shown in [9]. It remains to study the case
s = 0 for ∆> 0, where the polynomial associated with the matrix B(r, 0, t) is b(u) = tu2 + r.
The equation tu2 + r = 0 has two roots u1 and −u1 where u1 =

√
−r/t if rt < 0 and

u1 = i
√

r/t if rt > 0. Then we have a ∈ Ŝ if and only if (3) holds, and the condition in (3)
is equivalent to

1
an

n

∑
k=1

∣∣∣uk−n−1
1

∣∣∣∣∣∣1− (−1)k−n−1
∣∣∣ak−1 = O(1) (n→ ∞). (5)

The sequence
∣∣∣1− (−1)k−n−1

∣∣∣ is nonzero only if n− k is even, that is, n− k = 2i, and

we have
∣∣∣1− (−1)k−n−1

∣∣∣ = 2. So, the condition in (5) is equivalent to

1
an

E( n−1
2 )

∑
i=0

∣∣∣u−2i−1
1

∣∣∣an−2i−1 = O(1) (n→ ∞).

Now, if we let j = n− 2i− 1 we obtain

1
an

n−1

∑
j=0

∣∣∣uj−n
1

∣∣∣aj =
1

an
∣∣un

1

∣∣ n−1

∑
j=0

∣∣∣uj
1

∣∣∣aj = O(1) (n→ ∞).

This last condition means
(
an
∣∣un

1

∣∣)
n≥1 ∈ Ĉ1 and a ∈ Ĉ√|t/r|. Then, the identity

Ŝ = Ŝ0, follows from the inclusion Ĉ1 ⊂ G1. So, the condition
(
an
∣∣un

1

∣∣)
n≥1 ∈ Ĉ1 implies

there are K > 0 and γ > 1 such that an
∣∣un

1

∣∣ ≥ Kγn. This completes the proof.

Example 1. Assume r = 2, t = 1 and s = −3. Then we have u1 = 1 and u2 = 2, and
by Theorem 1, we obtain Ŝ = Ŝ0 = Ĉ1. Moreover if limn→∞a•n < 1, then x ∈ Ŝ .

Example 2. We obtain a similar result, for r = −t = 1 and s = 0.

In the following we need the next remark.

Remark 1. By Theorem 1, we can state the following result. Let r, t 6= 0 and assume ∆> 0. Then,
the condition limn→∞a•n < min(|u1|, |u2|) implies a ∈ Ŝ . Then, if ∆= 0 then u1 = u2 = −s/2t
and the condition limn→∞a•n < |u1| implies a ∈ Ŝ .

Theorem 1 may be rewritten in the following way.

Corollary 1. Let r, t 6= 0 and assume a• ∈ c. Then we have:

(i) Assume ∆> 0 and let u1 6= u2 be the roots of (2). Then Ŝ = Ŝ0 and a ∈ Ŝ if and only if
limn→∞ a•n < min(|u1|, |u2|).
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(ii) Assume ∆= 0 and let u1 = u2 = −s/2t be the double root of (2). Then we have Ŝ = Ŝ0 and
a ∈ Ŝ if and only if limn→∞ a•n < |u1|.

Proof. The identity Ŝ0 = Ŝ follows from Theorem 1. (i) We only study the case s 6= 0, since
the proof of the case s = 0 is similar. By Remark 1, we have limn→∞ a•n < min(|u1|, |u2|)
implies a ∈ Ŝ . Conversely, let a ∈ Ŝ . By Theorem 1, we have a ∈ Ĉmax(|1/u1|,|1/u2|).

If |u1| < |u2|, then we have
(
an|u1|n

)
n≥1 ∈ Ĉ1 and since a• ∈ c, by Lemma 1 we obtain

limn→∞ a•n < |u1|. Similarly, if |u2| < |u1|, then we have
(
an|u2|n

)
n≥1 ∈ Ĉ1 and by Lemma 1,

we have limn→∞ a•n < |u2|. So, the condition a ∈ Ĉmax(|1/u1|,|1/u2|) implies limn→∞ a•n <

min(|u1|, |u2|) and we have shown that a ∈ Ŝ implies limn→∞ a•n < min(|u1|, |u2|). This
concludes the proof of Part (i). (ii) can be shown using similar arguments as those used
above. This completes the proof.

As a direct consequence of Theorem 1, we state a result which is an extension of Corollary 1.

Corollary 2. Let a• ∈ c. If s = 0 and ∆= −rt < 0, then Ŝ = Ŝ0 and the condition a ∈ Ŝ holds
if and only if limn→∞ a•n <

√
r/t.

By Corollary 1, we obtain the following result stated in [9].

Corollary 3. Assume ∆> 0 with r, t 6= 0. The condition min(|u1|, |u2|) > 1 is equivalent to
the statement:

lim
n→∞

(ryn+1 + syn + tyn−1) = 0 =⇒ lim
n→∞

yn = 0 for all y.

We may illustrate Corollary 3 with the next examples.

Example 3. Since the absolute values of the roots of the equation u2− u− 3 = 0 are strictly upper
than 1, we have

lim
n→∞

(3yn+1 + yn − yn−1) = 0 =⇒ lim
n→∞

yn = 0 for all y.

Example 4. The condition |α| > 1 is equivalent to the statement

lim
n→∞

[αyn+1 − (α + 1)yn + yn−1] = 0 =⇒ lim
n→∞

yn = 0 for all y.

6.2. Characterizations of the Inclusions (χa)B̃(r,s,0)
⊂ χa and (χa)B̃(0,s,t)

⊂ χa

Using the equivalence of the conditions B−1(r, s) ∈ (χa, χ′b) and
D1/bB−1(r, s)Da ∈ (χe, χ′e), we obtain the following known result on the inclusions
(χa)B(r,s) ⊂ χa, with χ = s, or s0.

Lemma 5. Let r, s 6= 0, α = −s/r and let a ∈ U+. Then, the following statements are equivalent,
where χ = s, or s0, (i) (χa)B(r,s) ⊂ χa, (ii) (χa)B(r,s) = χa, (iii) B(r, s) ∈ (χa, χa) is surjective,

(iv) B(r, s) ∈ (χa, χa) is bijective, (v) a ∈ Ĉα.

Using Lemma 5, we may extend the results stated in Corollary 1 and determine the sets
Ŝ and Ŝ0 when either r, or t is equal to zero.

Proposition 2. Let r, s, t ∈ R. Let u0 be the root of the equation tu + s = 0 if s, t 6= 0, and let u′0
be the root of the equation su + r = 0 if r, s 6= 0. Then we have:

(i) (a) If r = 0 and s, t 6= 0, then we have: Ŝ = Ŝ0 = Ĉ1/u0 . (b) If t = 0 and r, s 6= 0, then

Ŝ = Ŝ0 = Ĉ1/u′0
.
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(ii) Let a• ∈ c. Then we have: (a) If r = 0 and s, t 6= 0, then Ŝ = Ŝ0 and a ∈ Ŝ if and

only if limn→∞ a•n < |u0|. (b) If t = 0 and r, s 6= 0, then Ŝ = Ŝ0 and a ∈ Ŝ if and only
if limn→∞ a•n <

∣∣u′0∣∣.
Proof. (i) (a) Case r = 0 and s, t 6= 0. Then, the matrix ˜B(0, s, t) is the triangle denoted
by B(s, t) and by Lemma 5, we have Ŝ = Ŝ0 = Ĉ1/u0 , where u0 is the root of the equation
tu + s = 0. (i) (b) We have (χa)B̃(r,s,0)

= (χa−)B(r,s), for χ = s, or s0 and as above,

by Lemma 5 we obtain Ŝ = Ŝ0 = Ĉ1/u′0
. (ii) follows from Lemma 1. This means that, under

the condition a• ∈ c, we have a ∈ Ĉ1 if and only if a ∈ Γ̂.

6.3. Case ∆< 0 with r, s, t 6= 0

Here, we obtain interesting results on the characterizations of Ŝ and Ŝ0 stated in
Part (i) of Proposition 1, with ∆< 0. We have u1 = ρeiθ with ρ > 0 and u2 = u1 are the roots
of Equation (2). Consider the conditions,

sup
n

(
1

ρnan

n

∑
k=1
|sin(n− k + 1)θ|ρkak−1

)
< ∞, (6)

lim
n→∞

sin(n− k + 1)θ
ρnan

= 0 for k = 1, 2,... (7)

and
lim

n→∞
a•n < ρ. (8)

We obtain the following results.

Proposition 3. [9] Assume ∆< 0 and let u1 = ρeiθ be a root of Equation (2). We have: (i) α)
a ∈ Ŝ if and only if condition (6) holds. β) a ∈ Ŝ0 if and only if conditions (6) and (7) hold. (ii)
Ĉ1/ρ ⊂ Ŝ0 ⊂ Ŝ . (iii) The condition in (8) implies a ∈ Ŝ0.

By Proposition 3 we obtain the following corollary.

Corollary 4. [9] Assume ∆< 0 and let u1 = ρeiθ with ρ > 0 and θ 6= mπ for m ∈ Z, be a root
of Equation (2).

(i) Let (anρn)n≥1 ∈ Ĉ1. Then, for every y:

lim
n→∞

[
ρ2yn+1 − 2(ρ cos θ)yn + yn−1

]
/an = 0⇒ lim

n→∞
yn/an = 0.

(ii) For any ρ > 1, we have limn→∞
[
ρ2yn+1 − 2(ρ cos θ)yn + yn−1

]
= 0 implies

limn→∞ yn = 0 for all y.

Finally, we state an elementary example.

Example 5. If limn→∞a•n < 1, then we have limn→∞(yn+1 + yn + yn−1)/an = 0 implies
limn→∞ yn/an = 0, for all y. This result follows from the fact that (8) implies a ∈ Ĉ1/ρ and from
Corollary 4, where u1 = e2iπ/3, is a root of the equation u2 + u + 1 = 0.

7. Characterization of the Set Ŝ(c)

In this section, we deal with the set Ŝ (c) =
{

a ∈ U+ :
(

s(c)a

)
B̃(r,s,t)

⊂ s(c)a

}
. This study

consists in determining the set of all a ∈ U+ for which
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lim
n→∞

ryn+1 + syn + tyn−1

an
= l =⇒ lim

n→∞

yn

an
= l′,

for all y and for some scalars l, l′. We state some general results on Ŝ (c) and give interesting
simplifications of this set. In this way, we confine our study to the case ∆ ≥ 0 and we
assume st < 0 < rt if ∆ > 0.

7.1. General Case

In this part, we use the identity
(

s(c)a

)
B̃(r,s,t)

=
(

s(c)a−

)
B(r,s,t)

, which is a direct conse-

quence the identity
(

B̃(r, s, t)y
)

n−1
= (B(r, s, t)y)n, for all n ≥ 2 and for all y, and we

consider the following statements.
(i) For ∆ 6= 0, we use the condition in (3) and the conditions

lim
n→∞

1
an

n

∑
k=1

(
uk−n−1

2 − uk−n−1
1

)
ak−1 = L for some scalar L, (9)

and
lim

n→∞

1
an

(
uk−n−1

2 − uk−n−1
1

)
ak−1 = lk for some scalars lk with k = 2, 3, . . . (10)

(ii) For ∆ = 0, we have u1 = −s/2t and we consider the conditions

sup
n≥1

(
1∣∣un

1

∣∣an

n

∑
k=1

(n− k + 1)
∣∣∣uk

1

∣∣∣ak−1

)
< ∞, (11)

lim
n→∞

1
un

1 an

n

∑
k=1

(n− k + 1)uk
1ak−1 = l for some scalar l (12)

and
lim

n→∞

1
un

1 an
(n− k + 1)uk

1ak−1 = lk for some scalar lk, k = 2, 3, . . . (13)

We can state the following result.

Proposition 4. Let a ∈ U+ and let r, t 6= 0. Then we have:

(i) If ∆ 6= 0, then a ∈ Ŝ (c) if and only if (3), (9) and (10) hold.

(ii) If ∆ = 0, then a ∈ Ŝ (c) if and only if the conditions in (11) and (12) hold.

Proof.

(i) We have a ∈ Ŝ (c) if and only if
(

s(c)a−

)
B(r,s,t)

⊂ s(c)a and

D1/a[B(r, s, t)]−1Da− ∈ (c, c). (14)

Since ∆ 6= 0, from the characterization of (c, c) and Lemma 4, the condition in (14) is
equivalent to (3), (9) and (10).

(ii) Here, the condition in (14) is equivalent to (11)–(13). Then, the condition in (11)
implies

(
an
∣∣un

1

∣∣)
n≥1 ∈ Ĉ1. Since a• ∈ c, by Lemma 1 we deduce that, there are K > 0

and γ > 1 such that an
∣∣un

1

∣∣ ≥ Kγn, for all n and the condition in (13) holds with lk = 0
for all k. This concludes the proof.
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7.2. Characterizations of the Set Ŝ (c) under the Conditions ∆ ≥ 0

In this part, we give interesting characterizations of the set Ŝ (c) in special cases.
We obtain the following theorem.

Theorem 2. Let a• ∈ c and assume r, s, t 6= 0. Then we have:

(i) Case ∆> 0 with st < 0 < rt. Then, the roots of (2) are positive, we have a ∈ Ŝ (c) if and only
if limn→∞ a•n < min(u1, u2).

(ii) Case ∆= 0. We have: (α) If u1 = −s/2t > 0 then a ∈ Ŝ (c) if and only if limn→∞ a•n < u1.

(β) If u1 = −s/2t < 0, then the condition a ∈ Ŝ (c) implies limn→∞ a•n < −u1.

Proof.

(i) We show that, limn→∞ a•n < min(u1, u2) implies a ∈ Ŝ (c). The condition limn→∞ a•n <

min(u1, u2), means (anαn)n≥1 ∈ Γ̂, where α is either u1, or u2. Since Γ̂ = Ĉ we obtain(
1
an

n

∑
k=1

uk−n−1
2 ak−1

)
n≥1

and

(
1
an

n

∑
k=1

uk−n−1
1 ak−1

)
n≥1

∈ c, (15)

and (9) holds. Since limn→∞ a•n < min(u1, u2), we have a ∈ Ŝ and (3) holds. Then,
the condition (anαn)n≥1 ∈ Γ̂ implies anαn → ∞ (n→ ∞). So, we obtain

κnk = a−1
n

(
uk−n−1

2 − uk−n−1
1

)
ak−1

= (anun
2 )
−1uk−1

2 ak−1 − (anun
1 )
−1uk−1

1 ak−1

= o(1) (n→ ∞) for all k.

This shows that the condition in (10) also holds. Conversely, assume a ∈ Ŝ (c).
Then we have a ∈Ŝ and by Theorem 1, we have a ∈ Ĉmax(1/u1,1/u2). So, we have(

anun
1
)

n≥1 ∈ Ĉ1 if u1 < u2 and (anun
2 )n≥1 ∈ Ĉ1 if u1 > u2. Since a• ∈ c we have(

anun
i
)

n≥1 ∈ c with i = 1, 2 and by Lemma 1, we conclude limn→∞ a•n < min(u1, u2).
This completes the proof.

(ii) α) It can easily be seen that Ŝ (c) ⊂ Ŝ and since Ŝ = Ĉ1/u1 and a• ∈ c, we deduce that

the condition a ∈ Ŝ (c) implies limn→∞ a•n < u1. So, we have shown the necessity. Con-
versely, assume limn→∞ a•n < u1. Then we have

(
anun

1
)

n≥1 ∈ Γ and by Lemma 3, this
condition implies (12). Since u1 > 0 the condition in (12) implies (11) and by Part (ii)

of Proposition 4, we have shown that the condition limn→∞ a•n < u1 implies a ∈ Ŝ (c).
This concludes the proof of α). As we have just seen, the statement in Part (ii) β),

follows from the inclusion Ŝ (c) ⊂ Ŝ , where Ŝ = Ĉ1/u1 . This concludes the proof
of Part (ii).

Remark 2. Under the conditions of Theorem 2, where ∆≥ 0, it can easily be seen that Ŝ (c) ∩ ĉ =
Ŝ ∩ ĉ = Ŝ0 ∩ ĉ.

As a direct consequence of Part (i) of Theorem 2, with a = e, we obtain the next
tauberian result which can be stated as follows.

Corollary 5. Let r, s ∈ R with r < 0, s > 2, and assume r + s − 1 < 0 and s2 + 4r > 0.
Then, for every y ∈ ω, the condition limn→∞(ryn+1 + syn − yn−1) = l implies limn→∞ yn = l′

for some scalars l and l′.
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Proof. The proof is elementary and follows from Theorem 2, where a = e, t = −1, ∆> 0
and min(u1, u2) = u2 =

(
s−
√

∆
)

/2 > 1.

We can state the next applications where a• ∈ c.

Example 6. The condition limn→∞ a•n < 1 is equivalent to the following statement: for every
y ∈ ω, we have

lim
n→∞

2yn+1 − 3yn + yn−1

an
= l =⇒ lim

n→∞

yn

an
= l′,

for some scalars l and l′. This result follows from Part (i) of Theorem 2, where b(u) = u2− 3u+ 2 = 0.

Example 7. By Corollary 5, with t = −1, r = −6 and s = 5 we obtain the following result.
For every y ∈ ω, the condition

lim
n→∞

(6yn+1 − 5yn + yn−1) = l

implies limn→∞ yn = l′, for some scalars l and l′.

In the case ∆ = 0 we obtain the following examples.

Example 8. Let α > 0. Then, the condition limn→∞ a•n < α is equivalent to the following
statement: for every y ∈ ω we have

lim
n→∞

α2yn+1 − 2αyn + yn−1

an
= l =⇒ lim

n→∞

yn

an
= l′,

for some scalars l and l′. This result follows from Part (ii) of Theorem 2, where b(u) = (u− α)2.

Example 9. As a direct consequence of Example 8, for any given α > 1 we obtain the following
statement. For every y ∈ ω there are scalars l and l′ such that the condition limn→∞(α2yn+1−
2αyn + yn−1) = l implies limn→∞ yn = l′.

We may state some characterizations of the set Ŝ (c) when either r, or t is equal to
zero. Then, B(r, s, t) is reduced to a double band matrix and we obtain the following result,
whose the elementary proof is left to the reader.

Proposition 5. Let a• ∈ c and let r, s, t ∈ R. Then we have:

(i) Assume r = 0 and st < 0. Let u0 > 0 be the root of the equation tu + s = 0. Then we have

a ∈ Ŝ (c) if and only if limn→∞ a•n < u0.

(ii) Assume t = 0 and rs < 0. Then, the matrix ˜B(r, s, 0) = B(s, r)T , is upper triangular

and if u′0 > 0 is the root of the equation su + r = 0 then we have a ∈ Ŝ (c) if and only if
limn→∞ a•n < u′0.

We are led to state the next remark, on the similar spaces associated with the double
band matrix B(r, s).

Remark 3. We have seen in Theorem 1, that the sets Ŝ and Ŝ0 with ∆ > 0 and r, s, t 6= 0, are
determined by Ŝ = Ŝ0 = Ĉmax(|1/u1|,|1/u2|), where u1 6= u2 are the roots of (2). In a similar
way, let r, s 6= 0, and define by S , S0 and S (c), the sets of all positive sequences a such that
(χa)B(r,s) ⊂ χa, where χ is any of the symbols s, s0, or s(c). Using Proposition 15, we have

S = S0 = Ĉ1/u′0
, where u′0 is the root of the equation su + r = 0. Concerning the sets Ŝ (c) and

S (c), we can state the following results, for a• ∈ c. If ∆> 0 with st < 0 < rt, then the roots of (2)
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are positive, and we have a ∈ Ŝ (c) if and only if limn→∞ a•n < min(u1, u2). Then, if rs < 0, it can
easily be shown that a ∈ S (c) if and only if limn→∞ a•n < u′0.

8. Conclusions

In this article, we have extended some results stated in [9], where we determined
each of the sets of all a ∈ U+ such that (χa)B̃(r,s,t)

⊂ χa, where χ is any of the symbols

s, or s0. Then, we have determined the sets of all a ∈ U+, that satisfy each of the next
inclusions, (1)

(
s(c)a

)
B̃(r,0,t)

⊂ s(c)a and r, t 6= 0, (2)
(

s(c)a

)
B̃(0,s,t)

⊂ s(c)a and s, t 6= 0, and

(3)
(

s(c)a

)
B̃(r,s,0)

⊂ s(c)a and r, s 6= 0. In this way, we have stated some characterizations

of the set of all positive sequences a, such that
(

s(c)a

)
B̃(r,s,t)

⊂ s(c)a . In future, it should be

interesting to extend these results, using the set `p of all sequences of p−absolute type, with
p ≥ 1, and determine each of the sets of all positive sequences a such that

(
`1

a
)

B̃(r,s,t)
⊂ `

p
a

for p ≥ 1, and
(
`

p
a

)
B̃(r,s,t)

⊂ χa, where χ is any of the symbols s, s0, or s(c). These results

can also lead to a connection between the fine spectrum theory and the solvability of some
(SSIE) of the form χB(r,s,t)−λI ⊂ χx, for λ ∈ C, where χ is a linear space of sequences.

Author Contributions: This manuscript is an extension of our previous results (see [9]). The pre-
sentation of this article and the results stated inside, follow from many discussions between the
three authors.

Funding: This research received no external funding.

Acknowledgments: We thank the referees, for their careful reading and valuable comments which
have improved the results, and the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wilansky, A. Summability through Functional Analysis; North-Holland Mathematics Studies; North Holland Publishing Co.:

Amsterdam, The Netherlands, 1984; Volume 85.
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3. Altay, B.; Başar, F. On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces c0 and c. Int. J.

Math. Math. Sci. 2005, 18, 3005–3013.
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