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Abstract. Given any sequence z = (zn)n≥1 of positive real numbers and any set E of complex sequences, we
write Ez for the set of all sequences y = (yn)n≥1 such that y/z = (yn/zn)n≥1 ∈ E; in particular, cz = s(c)

z denotes
the set of all sequences y such that y/z converges. Starting with the equation Fx = Fb we deal with some
perturbed equation of the form E+ Fx = Fb, where E is a linear space of sequences. In this way we solve the
previous equation where E = (Ea)T and (E,F) ∈ {(`∞, c) , (c0, `∞) , (c0, c) , (`p, c) , (`p, `∞) , (w0, `∞)} with p ≥ 1,
and T is a triangle.

1. Introduction

We write ω for the set of all complex sequences y = (yn)n≥1, `∞, c and c0 for the sets of all bounded,
convergent and null sequences, respectively, also, for 1 ≤ p < ∞,

`p =

y ∈ ω :
∞∑

n=1

∣∣∣yn

∣∣∣p < ∞ .
If y, z ∈ ω, then we write yz =

(
ynzn

)
n≥1. Let U =

{
y ∈ ω : yn , 0

}
and U+ =

{
y ∈ ω : yn > 0

}
. We write

z/u = (zn/un)n≥1 for all z ∈ ω and all u ∈ U, in particular 1/u = e/u, where e = 1 is the sequence with en = 1
for all n. Finally, if a ∈ U+ and E is any subset of ω, then we put

Ea = (1/a)−1
∗ E =

{
y ∈ ω : y/a ∈ E

}
.

Let E and F be subsets of ω. In [2], the sets sa, s0
a and s(c)

a were defined for positive sequences a by (1/a)−1
∗ E

and E = `∞, c0, c, respectively. In [3] the sum Ea + Fb and the product Ea ∗ Fb were defined where E, F are
any of the symbols s, s0, or s(c). Then in [6] the solvability was determined of sequences spaces equations
inclusion Gb ⊂ Ea + Fb where E, F, G ∈

{
s0, s(c), s

}
and some applications were given to sequence spaces

inclusions with operators. Recall that the spaces w∞ and w0 of strongly bounded and summable sequences
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are the sets of all y such that

n−1
n∑

k=1

∣∣∣yk

∣∣∣
n

is bounded and tends to zero respectively. These spaces were

studied by Maddox [22] and Malkowsky, Rakočević [21]. In [9, 14] were given some properties of well
known operators defined by the sets Wa = (1/a)−1

∗ w∞ and W0
a = (1/a)−1

∗ w0. We are interested in solving
special sequence spaces inclusion equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined
by an inclusion, (resp. identity), for which each term is a sum or a sum of products of sets of the form (Ea)T

and
(

E f (x)

)
T

where f maps U+ to itself, E is any linear space of sequences and T is a triangle. Some results
on (SSE) and (SSIE) were stated in [4–8, 12, 15, 16, 18, 19]. In [6] we dealt with the (SSIE) with operators
Ea + (Fx)∆ ⊂ s(c)

x where E and F are any of the sets c0, c, or s1. In [15] we determined the set of all positive
sequences x for which the (SSIE)

(
s(c)

x

)
B(r,s)

⊂

(
s(c)

x

)
B(r′,s′)

holds, where r, r′, s′ and s are real numbers, and
B(r, s) is the generalized operator of the first difference defined by (B(r, s)y)n = ryn + syn−1 for all n ≥ 2 and
(B(r, s)y)1 = ry1. In this way we determined the set of all positive sequences x for which

(
ryn + syn−1

)
/xn → l

implies
(
r′yn + s′yn−1

)
/xn → l′ (n→∞) for all y and for some scalars l and l′. In the paper [8] we used the sets

of analytic and entire sequences denoted by Λ and Γ and defined by sup
n≥1

(∣∣∣yn

∣∣∣1/n) < ∞ and lim
n→∞

(∣∣∣yn

∣∣∣1/n) = 0,

respectively. Then we dealt with a class of (SSE) with operators of the form ET + Fx = Fb, where T is either
∆ or Σ and E is any of the sets c0, c, `∞, `p, (p ≥ 1), w0, Γ, or Λ and F = c, `∞ or Λ. In [11] we solved the (SSE)
defined by (Ea)∆ + s(c)

x = s(c)
b where E is either c0, or `p, and the (SSE) (Ea)∆ + s0

x = s0
b where E is either c, or

`∞. In [10, 13] we dealt with the sequence spaces inclusion equations (SSIE) defined by Fb ⊂ Ea + F′x where
a and b are positive sequences and E, F and F′ are linear subspaces of ω and we solved the (SSE) defined
by Ea + Fx = Fb when e < F. In this paper we extend some of the results stated in [8] and solve a new class
of sequence spaces equations of the form (Ea)T + Fx = Fb where (E,F) is any of the class (`∞, c), (`p, c), (c0, c),
(c0, `∞), (`p, `∞), or (w0, `∞) with p ≥ 1 and T is a triangle whose the inverse has finite columns.

This paper is organized as follows. In Section 2 we recall some results on some sequence spaces and ma-
trix transformations. In Section 3 we recall some results on matrix transformations and we define the set W0

a .
In Section 4 we deal with the solvability of the (SSE) ET + Fx = Fb with e ∈ F for some triangle T . In Section
5 we deal with some perturbed equation of the form E+Fx = Fb, where E is a linear space of sequences. In this
way we solve such equations where E = (Ea)T and (E,F) ∈ {(`∞, c) , (c0, `∞) , (c0, c) , (`p, c) , (`p, `∞) , (w0, `∞)}
with p ≥ 1, and T is a triangle.

2. Preliminaries and notations

A BK space is a Banach space of sequences that is, an FK space. A BK space E is said to have AK if for every

sequence y = (yk)k≥1 ∈ E, then y = lim
p→∞

p∑
k=1

yke(k), where e(k) = (0, ..., 0, 1, 0, ...), 1 being in the k-th position.

Let R be the set of all real numbers. For any given infinite matrix A = (ank)n,k≥1 we define the operators

An = (ank)k≥1 for any integer n ≥ 1, by Any =

∞∑
k=1

ankyk, where y = (yk)k≥1, and the series are assumed

convergent for all n. So we are led to the study of the operator A defined by Ay =
(
Any

)
n≥1 mapping

between sequence spaces. When A maps E into F, where E and F are subsets of ω, we write A ∈ (E,F),
(cf. [22, 23]). It is well known that if E has AK, then the set B (E) of all bounded linear operators L mapping
in E, with norm ‖L‖ = sup

y,0

(∥∥∥L
(
y
)∥∥∥

E /
∥∥∥y

∥∥∥
E

)
satisfies the identity B (E) = (E,E). We denote by ω, c0, c and `∞

the sets of all sequences, the sets of null, convergent and bounded sequences. We write `p for the set of all
p-absolutely convergent series, with p ≥ 1, that is,

`p =

y ∈ ω :
∥∥∥y

∥∥∥
`p =

∞∑
k=1

∣∣∣yk

∣∣∣p < ∞.
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For any subset F of ω, we write FA =
{
y ∈ ω : Ay ∈ F

}
for the matrix domain of A in F. Then for any given

sequence u = (un)n≥1 ∈ ω we define the diagonal matrix Du by [Du]nn = un for all n. It is interesting to
rewrite the set Eu using a diagonal matrix. Let E be any subset of ω and u ∈ U+ we have Eu = Du ∗ E ={
y = (yn)n ∈ ω : y/u ∈ E

}
. We use the sets s0

a , s(c)
a , sa and `p

a defined as follows (cf. [2]). For given a ∈ U+ and
p ≥ 1 we put Da ∗ c0 = s0

a , Da ∗ c = s(c)
a , Da ∗ `∞ = sa, and Da ∗ `p = `p

a . We frequently write ca instead of s(c)
a

to simplify. Each of the spaces Da ∗ E, where E ∈ {c0, c, `∞} is a BK space normed by
∥∥∥y

∥∥∥
sa

= supn

(∣∣∣yn

∣∣∣ /an

)
and s0

a has AK. The set `p, (p ≥ 1) normed by
∥∥∥y

∥∥∥
`p is a BK space with AK. If a = (Rn)n≥1 with R > 0, we

write sR, s0
R, s(c)

R , (or cR) and `p
R for the sets sa, s0

a , s(c)
a and `p

a , respectively. We also write DR for D(Rn)n≥1
.

When R = 1, we obtain s1 = `∞, s0
1 = c0 and s(c)

1 = c. Recall that S1 = (s1, s1) is a Banach algebra and
(c0, s1) = (c, `∞) = (s1, s1) = S1. We have A ∈ S1 if and only if

sup
n

 ∞∑
k=1

|ank|

 < ∞. (1)

We are led to recall some well-known results on matrix transformations.

3. Some results on matrix transformations

3.1. The classes (c0, c0), (c0, c), (c, c0), (c, c), (`∞, c), (`∞, c0) and (`p,F) where F = c0, c, or `∞.

We recall the next well-known results.

Lemma 3.1. [[21], Theorem 1.36, p. 160], [22]
Let A = (ank)n,k≥1 be an infinite matrix. Then we have

i) A ∈ (c0, c0) if and only if (1) holds and

lim
n→∞

ank = 0 for all k. (2)

ii) A ∈ (c0, c) if and only if (1) holds and

lim
n→∞

ank = lk for all k and for some scalar lk. (3)

iii) A ∈ (c, c0) if and only if the conditions in (1) and (2) hold and lim
n→∞

∞∑
k=1

ank = 0.

iv) A ∈ (c, c) if and only if (1), (3) hold and lim
n→∞

∞∑
k=1

ank = l for some scalar l.

v) A ∈ (`∞, c) if and only if (3) holds and lim
n→∞

∞∑
k=1

|ank| =

∞∑
k=1

|lk|.

vi) A ∈ (`∞, c0) if and only if lim
n→∞

∞∑
k=1

|ank| = 0.

Characterization of (`p,F) where F = c0, c, or `∞. For this, we let q = p/
(
p − 1

)
for p > 1 and we let

M (`p, `∞) = sup
n,k≥1
|ank| if p = 1, andM (`p, `∞) = sup

n≥1

 ∞∑
k=1

|ank|
q

, if p > 1.

Lemma 3.2. [ [21], Theorem 1.37, p. 161]
Let p ≥ 1 and A = (ank)n,k≥1 be an infinite matrix. Then we have
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i) A ∈ (`p, `∞) if and only if

M (`p, `∞) < ∞. (4)

ii) A ∈ (`p, c0) if and only if the conditions in (4) and (2) hold.
iii) A ∈ (`p, c) if and only if the conditions in (4) and (3) hold.

We also use the well known property, stated as follows.

Lemma 3.3. Let a, b ∈ U+ and let E, F ⊂ ω be any linear spaces. Let A = (ank)n,k≥1 be an infinite matrix. We have
A ∈ (Ea,Fb) if and only if D1/bADa ∈ (E,F), where

(
D1/bADa

)
nk = b−1

n ankak for all n, k ≥ 1.

Lemma 3.4. [ [4], Lemma 9, p. 45]
Let T′ and T′′ be any given triangles and let E, F ⊂ ω. Then for any given operator T represented by a triangle we
have T ∈ (ET′ ,FT′′ ) if and only if T′′TT′−1

∈ (E,F).

3.2. On the triangles C (λ) and ∆ (λ) and the sets Wa and W0
a .

To solve the next equations we recall some definitions and results. The infinite matrix T = (tnk)n,k≥1 is
said to be a triangle if tnk = 0 for k > n and tnn , 0 for all n. The infinite matrix C (λ) with λ = (λn)n ∈ U is
the triangle defined by [C (λ)]nk = 1/λn for k ≤ n. It can be shown that the triangle ∆ (λ) whose the nonzero
entries are defined by [∆ (λ)]nn = λn, and [∆ (λ)]n,n−1 = −λn−1 for all n ≥ 2 is the inverse of C (λ), that is,
C (λ)

(
∆ (λ) y

)
= ∆ (λ)

(
C (λ) y

)
for all y ∈ ω. If λ = e = (1, ..., 1, ...) we obtain the well known operator of the

first difference represented by ∆ (e) = ∆. We then have ∆ny = yn − yn−1 for all y ∈ ω and for all n ≥ 1, with
the convention y0 = 0. It is usually written Σ = C (e) and then we may write C (λ) = D1/λΣ. Note that ∆ =
Σ−1. The Cesàro operator is defined By C1 = C

(
(n)n≥1

)
. We use the set of sequences that are a−strongly

convergent to zero defined for a ∈ U+ by

W0
a = (w0)a =

y ∈ ω : lim
n→∞

n−1
n∑

k=1

∣∣∣yk

∣∣∣ /ak

 = 0

 ,
(cf. [9, 14, 17]). It can easily be seen that W0

a =
{
y ∈ ω : C1D1/a

∣∣∣y∣∣∣ ∈ c0

}
. If a = (rn)n≥1 the set W0

a is denoted by
W0

r . For r = 1 we obtain the well known set

w0 =

y ∈ ω : lim
n→∞

n−1
n∑

k=1

∣∣∣yk

∣∣∣ = 0


called the space of sequences that are strongly summable to zero by the Cesàro method (cf. [20]).

3.3. Characterization of (w0, `∞) and (w0, c0).
Here we recall some results that are direct consequence of [1], Theorem 2.4], where we let σ = (σn)n with

σn = σn (A) =

∞∑
ν=0

2ν max
2ν≤k≤2ν+1−1

|ank| , (5)

for A = (ank)n,k≥1. From [1] we obtain the following.

Lemma 3.5.

i) We have A ∈ (w0, `∞) if and only if

σ ∈ `∞. (6)

ii) A ∈ (w0, c0) if and only if (6) and (2) hold.
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4. On the solvability of the (SSE) ET + Fx = Fb where T is a triangle and e ∈ F

4.1. On the multipliers of some sets.
First we need to recall some well known results. Let y and z be sequences and let E and F be two subsets

of ω, we then write
M (E,F) =

{
y ∈ ω : yz ∈ F for all z ∈ E

}
,

the set M (E,F) is called the multiplier space of E and F. Recall the next well known results.

Lemma 4.1. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then

i) M (E,F) ⊂M
(
Ẽ,F

)
whenever Ẽ ⊂ E,

ii) M (E,F) ⊂M
(
E, F̃

)
whenever F ⊂ F̃.

4.2. On the sequence spaces equations.
For b ∈ U+ and for any subset F of ω, we denote by clF (b) the equivalence class for the equivalence

relation RF defined by xRFy if Fx = Fy for x, y ∈ U+. It can easily be seen that clF (b) is the set of all x ∈ U+

such that x/b ∈ M (F,F) and b/x ∈ M (F,F), (cf. [18]). We then have clF (b) = clM(F,F) (b). For instance clc (b) is
the set of all x ∈ U+ such that Dxc = Dbc, that is, s(c)

x = s(c)
b . This is the set of all sequences x ∈ U+ such that

xn ∼ Cbn (n→∞) for some C > 0. In [18] we denote by cl∞ (b) the class cl`∞ (b). Recall that cl∞ (b) is the set
of all x ∈ U+, such that K1 ≤ xn/bn ≤ K2 for all n and for some K1, K2 > 0. For a, b ∈ U+, we define the set
Sa,b (E,F) = {x ∈ U+ : Ea + Fx = Fb} for E,F ⊂ ω.

As we have just seen, for any given b ∈ U+ the solutions of the (SSE) Fx = Fb are determined by x ∈ clF (b).
Then the new (SSE) E + Fx = Fb where E is a linear space of sequences and a ∈ U+can be considered as a
perturbed equation. The question is: what are the conditions on E under which the (SSE) Fx = Fb and the
perturbed equation have the same solutions ?

Now we study some perturbed equations involving an operator represented by a triangle.

4.3. On the (SSE) with operators represented by a triangle.
Let b ∈ U+, and E, F be two subsets of ω. We deal with the set Sb (ET ,F) of all the positive sequences that

satisfy the (SSE) with operator

ET + Fx = Fb, (7)

where T is a triangle and x ∈ U+ is the unknown. The equation in (7) means for every y ∈ ω, we have
y/b ∈ F if and only if there are u, v ∈ ω with y = u + v such that Tu ∈ E and v/x ∈ F. We assume e ∈ F. In
the following we use the next two properties,

F ⊂M (F,F) , (8)

and

F ⊂ F1/z for all z ∈ U+ that satisfy zn → 1 (n→∞) . (9)

Definition 4.2. Let b ∈ U+ and let E, F be linear spaces of sequences. We say that the (SSE) defined in (7), or the set
Sb (ET ,F) is regular if

Sb (ET ,F) =

{
clF (b) , if D1/bT

−1
∈ (E,F) ,

∅, if D1/bT
−1 < (E,F) . (10)
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We recall the next result where we use the equivalence of D1/bT
−1
∈ (E,F) and 1/b ∈M (ET ,F).

Lemma 4.3. [ [14], Proposition 6.1, p. 94]
Let b ∈ U+ and T be a triangle, let E, F be linear spaces of sequences with e ∈ F. Assume the space F satisfies the
conditions in (8) and (9) and

M (ET ,F) ⊂M (ET , c0) . (11)

Then the (SSE) defined in (7) is regular, that is,

Sb (ET ,F) =

{
clF (b) , if 1/b ∈M (ET ,F) ,
∅, if 1/b <M (ET ,F) . (12)

For any b ∈ U+, if the perturbed equation ET + Fx = Fb is regular, then it is equivalent to the (SSE)
Fx = Fb. We may adapt the previous result using the notations of matrix transformations instead of the
multiplier of sequence spaces. The proof of the next result follows from the equivalence of z ∈ M (ET ,F )
and DzT

−1
∈ (E,F ) for any given set F of sequences. So we obtain the following result which is a direct

consequence of Lemma 4.3.

Lemma 4.4. [ [14], Corollary 6.1, p. 94]
Let b ∈ U+ and T be a triangle and let E, F be linear spaces of sequences with e ∈ F. Assume the space F satisfies the
conditions in (8) and (9) and

DzT
−1
∈ (E,F) implies DzT

−1
∈ (E, c0) for all z ∈ U+. (13)

Then the (SSE) defined in (7) is regular.

5. Application to the solvability of the (SSE) of the form (Ea)T + Fx = Fb where F ∈ {c, `∞}

Let T be a triangle and let

Θ = {(`∞, c) , (c0, `∞) , (c0, c) , (`p, c) , (`p, `∞) , (w0, `∞)}

with p ≥ 1. Let a, b be positive sequences and consider the (SSE)

(Ea)T + Fx = Fb, (14)

where (E,F) ∈ Θ. In the following we write SF
E (T) = Sb ((Ea)T ,F) where E, F ⊂ ω, and more precisely we

write Sc
∞

(T) = Sc
`∞

(T), S∞0 (T) = S`∞c0
(T), Sc

0 (T) = Sc
c0

(T), Sc
p (T) = Sc

`p (T), S∞p (T) = S`∞`p (T) for p ≥ 1, and
S∞w0

(T) = S`∞w0
(T). So Sc

∞
(T), SF

0 (T), SF
p (T) and S∞w0

(T) are the sets of all positive sequences that satisfy the

(SSE) (sa)T + s(c)
x = s(c)

b ,
(
s0

a

)
T

+ Fx = Fb,
(
`p

a

)
T

+ Fx = Fb where F = c, or `∞ with p ≥ 1 and
(
W0

a

)
T

+ sx = sb,
respectively. From Lemma 4.4 we obtain the next result.

Theorem 5.1. Let a, b ∈ U+, let T be a triangle and let (E,F) ∈ Θ. We write ST for the set of all positive sequences x
that satisfy the (SSE) in (14). Assume for every positive integer k there is an integer ik > k such that(

T−1
)

nk
= 0 for all n ≥ ik. (15)

Then the set ST is determined by (10), that is,

ST =

{
clF (b) , if D1/bT−1Da ∈ (E,F) ,
∅, if D1/bT−1Da < (E,F) .
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Proof. Let T = D1/aT, then (Ea)T = ET and therefore the (SSE) in (14) is equivalent to the (SSE) ET + Fx =
Fb. From the characterizations of the classes (E,F) ∈ Θ, and under the condition in (15), the condition
DzT−1Da ∈ (E,F) holds if and only if DzT−1Da ∈ (E, c0) for all z ∈ U+. Since the conditions in (8) and (9) hold
for F = c, or `∞ we conclude by Lemma 4.4 with T = D1/aT, that ST is regular. More precisely we consider
the case (E,F) = (`∞, c). By v) in Lemma 3.1 where lk = 0 for all k and using (15) we have DzT−1Da ∈ (`∞, c) if

and only if lim
n→∞

(
DzT−1Da

)
nk

= 0 for all k, and lim
n→∞

n∑
k=1

∣∣∣∣(DzT−1Da

)
nk

∣∣∣∣ = 0. So the condition DzT−1Da ∈ (`∞, c)

implies DzT−1Da ∈ (`∞, c0), for all z ∈ U+, and Lemma 4.4 can be applied with T = D1/aT. The other cases
can be shown in a similar way.

To state the next results we use the sequence σ defined in Lemma 3.5 where A is a triangle L, so we
obtain

σn = σn (L) =

νn−1∑
ν=0

2ν max
2ν≤k≤2ν+1−1

|Lnk| + 2νn max
2νn≤k≤n

|Lnk| (16)

where for every n, νn is an integer uniquely defined by 2νn ≤ n ≤ 2νn+1
− 1. In the following we use the next

conditions where T is a triangle

lim
n→∞

1
bn

n∑
k=1

∣∣∣T−1
nk

∣∣∣ ak = 0, (17)

sup
n

 1
bn

n∑
k=1

∣∣∣T−1
nk

∣∣∣ ak

 < ∞, (18)

sup
n

 1
bq

n

n∑
k=1

∣∣∣T−1
nk

∣∣∣q aq
k

 < ∞with q = p/
(
p − 1

)
, (p > 1), (19)

and

sup
(n,k)∈χ

( 1
bn

∣∣∣T−1
nk

∣∣∣ ak

)
< ∞, (20)

where we let χ = {(n, k) : k ≤ n and n ≥ 1}. By Theorem 5.1 and using the characterization of each of the sets
(E,F) ∈ Θ recalled in Lemma 3.1, Lemma 3.2 and Lemma 3.5 we obtain the next corollary.

Corollary 5.2. Let a, b ∈ U+ and let T be a triangle. Assume the condition in (15) holds. Then we have:

i) a) The solutions of the equation (sa)T + s(c)
x = s(c)

b are determined by

Sc
∞

(T) =

{
clc (b) , if (17) holds,
∅, otherwise.

b) The solutions of the equation
(
s0

a

)
T

+ Fx = Fb with F = c, or `∞ are determined by

SF
0 (T) =

{
clF (b) , if (18) holds,
∅, otherwise.

ii) Let F = c, or `∞. Then the solutions of the equation
(
`p

a

)
T

+ Fx = Fb with p ≥ 1 are determined in the following
way.
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a) If p > 1, then

SF
p (T) =

{
clF (b) , if (19) holds,
∅, otherwise.

b) If p = 1, then

SF
1 (T) =

{
clF (b) , if (20) holds,
∅, otherwise.

iii) The solutions of the equation
(
W0

a

)
T

+ sx = sb are determined by

S∞w0
(T) =

{
cl∞ (b) , if supn

{
σn

(
D1/bT−1Da

)}
< ∞,

∅, otherwise.
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method Antartica J. Math. 10 (6) (2013), 589-609.

[17] de Malafosse, B., Rakočević V., Calculations in new sequence spaces and application to statistical convergence, Cubo A 12 (3), (2010),
117- 132.
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