Matrix Transformations and Application to Perturbed Problems of Some Sequence Spaces Equations with Operators

Bruno de Malafosse ${ }^{\text {a }}$, Ali Fares ${ }^{\text {b }}$, Ali Ayad ${ }^{\text {b }}$
${ }^{a}$ LMAH, Université du Havre, Le Havre, France
${ }^{b}$ Department of Mathematics, Faculty of sciences, Section 1,
Lebanese university, Hadath, Lebanon

Abstract

Given any sequence $z=\left(z_{n}\right)_{n \geq 1}$ of positive real numbers and any set E of complex sequences, we write E_{z} for the set of all sequences $y=\left(y_{n}\right)_{n \geq 1}$ such that $y / z=\left(y_{n} / z_{n}\right)_{n \geq 1} \in E$; in particular, $c_{z}=s_{z}^{(c)}$ denotes the set of all sequences y such that y / z converges. Starting with the equation $F_{x}=F_{b}$ we deal with some perturbed equation of the form $\mathcal{E}+F_{x}=F_{b}$, where \mathcal{E} is a linear space of sequences. In this way we solve the previous equation where $\mathcal{E}=\left(E_{a}\right)_{T}$ and $(E, F) \in\left\{\left(\ell_{\infty}, c\right),\left(c_{0}, \ell_{\infty}\right),\left(c_{0}, c\right),\left(\ell^{p}, c\right),\left(\ell^{p}, \ell_{\infty}\right),\left(w_{0}, \ell_{\infty}\right)\right\}$ with $p \geq 1$, and T is a triangle.

1. Introduction

We write ω for the set of all complex sequences $y=\left(y_{n}\right)_{n \geq 1}, \ell_{\infty}, c$ and c_{0} for the sets of all bounded, convergent and null sequences, respectively, also, for $1 \leq p<\infty$,

$$
\ell^{p}=\left\{y \in \omega: \sum_{n=1}^{\infty}\left|y_{n}\right|^{p}<\infty\right\} .
$$

If $y, z \in \omega$, then we write $y z=\left(y_{n} z_{n}\right)_{n>1}$. Let $U=\left\{y \in \omega: y_{n} \neq 0\right\}$ and $U^{+}=\left\{y \in \omega: y_{n}>0\right\}$. We write $z / u=\left(z_{n} / u_{n}\right)_{n \geq 1}$ for all $z \in \omega$ and all $u \in U$, in particular $1 / u=e / u$, where $e=\mathbf{1}$ is the sequence with $e_{n}=1$ for all n. Finally, if $a \in U^{+}$and E is any subset of ω, then we put

$$
E_{a}=(1 / a)^{-1} * E=\{y \in \omega: y / a \in E\}
$$

Let E and F be subsets of ω. In [2], the sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ were defined for positive sequences a by $(1 / a)^{-1} * E$ and $E=\ell_{\infty}, c_{0}, c$, respectively. In [3] the sum $E_{a}+F_{b}$ and the product $E_{a} * F_{b}$ were defined where E, F are any of the symbols s, s^{0}, or $s^{(c)}$. Then in [6] the solvability was determined of sequences spaces equations inclusion $G_{b} \subset E_{a}+F_{b}$ where $E, F, G \in\left\{s^{0}, s^{(c)}, s\right\}$ and some applications were given to sequence spaces inclusions with operators. Recall that the spaces w_{∞} and w_{0} of strongly bounded and summable sequences

[^0]are the sets of all y such that $\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right|\right)_{n}$ is bounded and tends to zero respectively. These spaces were studied by Maddox [22] and Malkowsky, Rakočević [21]. In [9, 14] were given some properties of well known operators defined by the sets $W_{a}=(1 / a)^{-1} * w_{\infty}$ and $W_{a}^{0}=(1 / a)^{-1} * w_{0}$. We are interested in solving special sequence spaces inclusion equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined by an inclusion, (resp. identity), for which each term is a sum or a sum of products of sets of the form $\left(E_{a}\right)_{T}$ and $\left(E_{f(x)}\right)_{T}$ where f maps U^{+}to itself, E is any linear space of sequences and T is a triangle. Some results on (SSE) and (SSIE) were stated in [4-8, 12, 15, 16, 18, 19]. In [6] we dealt with the (SSIE) with operators $E_{a}+\left(F_{x}\right)_{\Delta} \subset s_{x}^{(c)}$ where E and F are any of the sets c_{0}, c, or s_{1}. In [15] we determined the set of all positive sequences x for which the (SSIE) $\left(s_{x}^{(c)}\right)_{B(r, s)} \subset\left(s_{x}^{(c)}\right)_{B\left(r^{\prime}, s^{\prime}\right)}$ holds, where $r, r^{\prime}, s^{\prime}$ and s are real numbers, and $B(r, s)$ is the generalized operator of the first difference defined by $(B(r, s) y)_{n}=r y_{n}+s y_{n-1}$ for all $n \geq 2$ and $(B(r, s) y)_{1}=r y_{1}$. In this way we determined the set of all positive sequences x for which $\left(r y_{n}+s y_{n-1}\right) / x_{n} \rightarrow l$ implies $\left(r^{\prime} y_{n}+s^{\prime} y_{n-1}\right) / x_{n} \rightarrow l^{\prime}(n \rightarrow \infty)$ for all y and for some scalars l and l^{\prime}. In the paper [8] we used the sets of analytic and entire sequences denoted by $\boldsymbol{\Lambda}$ and Γ and defined by $\sup _{n \geq 1}\left(\left|y_{n}\right|^{1 / n}\right)<\infty$ and $\lim _{n \rightarrow \infty}\left(\left|y_{n}\right|^{1 / n}\right)=0$, respectively. Then we dealt with a class of (SSE) with operators of the form $E_{T}+F_{x}=F_{b}$, where T is either Δ or Σ and E is any of the sets $c_{0}, c, \ell_{\infty}, \ell_{p},(p \geq 1), w_{0}, \Gamma$, or $\boldsymbol{\Lambda}$ and $F=c, \ell_{\infty}$ or Λ. In [11] we solved the (SSE) defined by $\left(E_{a}\right)_{\Delta}+s_{x}^{(c)}=s_{b}^{(c)}$ where E is either c_{0}, or ℓp, and the (SSE) $\left(E_{a}\right)_{\Delta}+s_{x}^{0}=s_{b}^{0}$ where E is either c, or ℓ_{∞}. In $[10,13]$ we dealt with the sequence spaces inclusion equations (SSIE) defined by $F_{b} \subset E_{a}+F_{x}^{\prime}$ where a and b are positive sequences and E, F and F^{\prime} are linear subspaces of ω and we solved the (SSE) defined by $E_{a}+F_{x}=F_{b}$ when $e \notin F$. In this paper we extend some of the results stated in [8] and solve a new class of sequence spaces equations of the form $\left(E_{a}\right)_{T}+F_{x}=F_{b}$ where (E, F) is any of the class $\left(\ell_{\infty}, c\right),\left(\ell^{p}, c\right),\left(c_{0}, c\right)$, $\left(c_{0}, \ell_{\infty}\right),\left(\ell^{p}, \ell_{\infty}\right)$, or $\left(w_{0}, \ell_{\infty}\right)$ with $p \geq 1$ and T is a triangle whose the inverse has finite columns.

This paper is organized as follows. In Section 2 we recall some results on some sequence spaces and matrix transformations. In Section 3 we recall some results on matrix transformations and we define the set W_{a}^{0}. In Section 4 we deal with the solvability of the (SSE) $E_{\mathcal{T}}+F_{x}=F_{b}$ with $e \in F$ for some triangle \mathcal{T}. In Section 5 we deal with some perturbed equation of the form $\mathcal{E}+F_{x}=F_{b}$, where \mathcal{E} is a linear space of sequences. In this way we solve such equations where $\mathcal{E}=\left(E_{a}\right)_{T}$ and $(E, F) \in\left\{\left(\ell_{\infty}, c\right),\left(c_{0}, \ell_{\infty}\right),\left(c_{0}, c\right),\left(\ell^{p}, c\right),\left(\ell^{p}, \ell_{\infty}\right),\left(w_{0}, \ell_{\infty}\right)\right\}$ with $p \geq 1$, and T is a triangle.

2. Preliminaries and notations

A $B K$ space is a Banach space of sequences that is, an $F K$ space. A $B K$ space E is said to have $A K$ if for every sequence $y=\left(y_{k}\right)_{k \geq 1} \in E$, then $y=\lim _{p \rightarrow \infty} \sum_{k=1}^{p} y_{k} e^{(k)}$, where $e^{(k)}=(0, \ldots, 0,1,0, \ldots), 1$ being in the k-th position.

Let \mathbb{R} be the set of all real numbers. For any given infinite matrix $A=\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$ we define the operators $A_{n}=\left(\mathbf{a}_{n k}\right)_{k \geq 1}$ for any integer $n \geq 1$, by $A_{n} y=\sum_{k=1}^{\infty} \mathbf{a}_{n k} y_{k}$, where $y=\left(y_{k}\right)_{k \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator A defined by $A y=\left(A_{n} y\right)_{n \geq 1}$ mapping between sequence spaces. When A maps E into F, where E and F are subsets of ω, we write $A \in(E, F)$, (cf. [22,23]). It is well known that if E has $A K$, then the set $\mathcal{B}(E)$ of all bounded linear operators L mapping in E, with norm $\|L\|=\sup _{y \neq 0}\left(\|L(y)\|_{E} /\|y\|_{E}\right)$ satisfies the identity $\mathcal{B}(E)=(E, E)$. We denote by ω, c_{0}, c and ℓ_{∞} the sets of all sequences, the sets of null, convergent and bounded sequences. We write ℓ^{p} for the set of all p-absolutely convergent series, with $p \geq 1$, that is,

$$
\ell^{p}=\left\{y \in \omega:\|y\|_{\ell^{p}}=\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}<\infty\right\} .
$$

For any subset F of ω, we write $F_{A}=\{y \in \omega: A y \in F\}$ for the matrix domain of A in F. Then for any given sequence $u=\left(u_{n}\right)_{n \geq 1} \in \omega$ we define the diagonal matrix D_{u} by $\left[D_{u}\right]_{n n}=u_{n}$ for all n. It is interesting to rewrite the set E_{u} using a diagonal matrix. Let E be any subset of ω and $u \in U^{+}$we have $E_{u}=D_{u} * E=$ $\left\{y=\left(y_{n}\right)_{n} \in \omega: y / u \in E\right\}$. We use the sets $s_{a}^{0}, s_{a}^{(c)}, s_{a}$ and ℓ_{a}^{p} defined as follows (cf. [2]). For given $a \in U^{+}$and $p \geq 1$ we put $D_{a} * c_{0}=s_{a}^{0}, D_{a} * c=s_{a}^{(c)}, D_{a} * \ell_{\infty}=s_{a}$, and $D_{a} * \ell^{p}=\ell_{a}^{p}$. We frequently write c_{a} instead of $s_{a}^{(c)}$ to simplify. Each of the spaces $D_{a} * E$, where $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$ is a $B K$ space normed by $\|y\|_{s_{a}}=\sup _{n}\left(\left|y_{n}\right| / a_{n}\right)$ and s_{a}^{0} has $A K$. The set $\ell^{p},(p \geq 1)$ normed by $\|y\|_{\ell^{p}}$ is a BK space with AK. If $a=\left(R^{n}\right)_{n \geq 1}$ with $R>0$, we write $s_{R}, s_{R}^{0}, s_{R}^{(c)}$, (or $\left.c_{R}\right)$ and ℓ_{R}^{p} for the sets $s_{a}, s_{a}^{0}, s_{a}^{(c)}$ and ℓ_{a}^{p}, respectively. We also write D_{R} for $D_{\left(R^{n}\right)_{n \geq 1}}$. When $R=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$. Recall that $S_{1}=\left(s_{1}, s_{1}\right)$ is a Banach algebra and $\left(c_{0}, s_{1}\right)=\left(c, \ell_{\infty}\right)=\left(s_{1}, s_{1}\right)=S_{1}$. We have $A \in S_{1}$ if and only if

$$
\begin{equation*}
\sup _{n}\left(\sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|\right)<\infty . \tag{1}
\end{equation*}
$$

We are led to recall some well-known results on matrix transformations.

3. Some results on matrix transformations

3.1. The classes $\left(c_{0}, c_{0}\right),\left(c_{0}, c\right),\left(c, c_{0}\right),(c, c),\left(\ell_{\infty}, c\right),\left(\ell_{\infty}, c_{0}\right)$ and $\left(\ell^{p}, F\right)$ where $F=c_{0}, c$, or ℓ_{∞}.

We recall the next well-known results.
Lemma 3.1. [[21], Theorem 1.36, p. 160], [22]
Let $A=\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$ be an infinite matrix. Then we have
i) $A \in\left(c_{0}, c_{0}\right)$ if and only if (1) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{a}_{n k}=0 \text { for all } k \tag{2}
\end{equation*}
$$

ii) $A \in\left(c_{0}, c\right)$ if and only if (1) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{a}_{n k}=l_{k} \text { for all } k \text { and for some scalar } l_{k} \text {. } \tag{3}
\end{equation*}
$$

iii) $A \in\left(c, c_{0}\right)$ if and only if the conditions in (1) and (2) hold and $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \mathbf{a}_{n k}=0$.
iv) $A \in(c, c)$ if and only if (1), (3) hold and $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \mathbf{a}_{n k}=l$ for some scalar l.
v) $A \in\left(\ell_{\infty}, c\right)$ if and only if (3) holds and $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|=\sum_{k=1}^{\infty}\left|l_{k}\right|$.
vi) $A \in\left(\ell_{\infty}, c_{0}\right)$ if and only if $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|=0$.

Characterization of $\left(\ell^{p}, F\right)$ where $F=c_{0}, c$, or ℓ_{∞}. For this, we let $q=p /(p-1)$ for $p>1$ and we let $\mathcal{M}\left(\ell^{p}, \ell_{\infty}\right)=\sup _{n, k \geq 1}\left|\mathbf{a}_{n k}\right|$ if $p=1$, and $\mathcal{M}\left(\ell^{p}, \ell_{\infty}\right)=\sup _{n \geq 1}\left(\sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|^{q}\right)$, if $p>1$.

Lemma 3.2. [[21], Theorem 1.37, p. 161]
Let $p \geq 1$ and $A=\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$ be an infinite matrix. Then we have
i) $A \in\left(\ell^{p}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\mathcal{M}\left(\ell^{p}, \ell_{\infty}\right)<\infty \tag{4}
\end{equation*}
$$

ii) $A \in\left(\ell^{p}, c_{0}\right)$ if and only if the conditions in (4) and (2) hold.
iii) $A \in\left(\ell^{p}, c\right)$ if and only if the conditions in (4) and (3) hold.

We also use the well known property, stated as follows.
Lemma 3.3. Let $a, b \in U^{+}$and let $E, F \subset \omega$ be any linear spaces. Let $A=\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$ be an infinite matrix. We have $A \in\left(E_{a}, F_{b}\right)$ if and only if $D_{1 / b} A D_{a} \in(E, F)$, where $\left(D_{1 / b} A D_{a}\right)_{n k}=b_{n}^{-1} \mathbf{a}_{n k} a_{k}$ for all $n, k \geq 1$.

Lemma 3.4. [[4], Lemma 9, p. 45]
Let T^{\prime} and $T^{\prime \prime}$ be any given triangles and let $E, F \subset \omega$. Then for any given operator T represented by a triangle we have $T \in\left(E_{T^{\prime}}, F_{T^{\prime \prime}}\right)$ if and only if $T^{\prime \prime} T T^{\prime-1} \in(E, F)$.

3.2. On the triangles $C(\lambda)$ and $\Delta(\lambda)$ and the sets W_{a} and W_{a}^{0}.

To solve the next equations we recall some definitions and results. The infinite matrix $T=\left(t_{n k}\right)_{n, k \geq 1}$ is said to be a triangle if $t_{n k}=0$ for $k>n$ and $t_{n n} \neq 0$ for all n. The infinite matrix $C(\lambda)$ with $\lambda=\left(\lambda_{n}\right)_{n} \in U$ is the triangle defined by $[C(\lambda)]_{n k}=1 / \lambda_{n}$ for $k \leq n$. It can be shown that the triangle $\Delta(\lambda)$ whose the nonzero entries are defined by $[\Delta(\lambda)]_{n n}=\lambda_{n}$, and $[\Delta(\lambda)]_{n, n-1}=-\lambda_{n-1}$ for all $n \geq 2$ is the inverse of $C(\lambda)$, that is, $C(\lambda)(\Delta(\lambda) y)=\Delta(\lambda)(C(\lambda) y)$ for all $y \in \omega$. If $\lambda=e=(1, \ldots, 1, \ldots)$ we obtain the well known operator of the first difference represented by $\Delta(e)=\Delta$. We then have $\Delta_{n} y=y_{n}-y_{n-1}$ for all $y \in \omega$ and for all $n \geq 1$, with the convention $y_{0}=0$. It is usually written $\Sigma=C(e)$ and then we may write $C(\lambda)=D_{1 / \lambda} \Sigma$. Note that $\Delta=$ Σ^{-1}. The Cesàro operator is defined By $C_{1}=C\left((n)_{n \geq 1}\right)$. We use the set of sequences that are a-strongly convergent to zero defined for $a \in U^{+}$by

$$
W_{a}^{0}=\left(w_{0}\right)_{a}=\left\{y \in \omega: \lim _{n \rightarrow \infty}\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right| / a_{k}\right)=0\right\}
$$

(cf. [9, 14, 17]). It can easily be seen that $W_{a}^{0}=\left\{y \in \omega: C_{1} D_{1 / a}|y| \in c_{0}\right\}$. If $a=\left(r^{n}\right)_{n \geq 1}$ the set W_{a}^{0} is denoted by W_{r}^{0}. For $r=1$ we obtain the well known set

$$
w_{0}=\left\{y \in \omega: \lim _{n \rightarrow \infty}\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right|\right)=0\right\}
$$

called the space of sequences that are strongly summable to zero by the Cesàro method (cf. [20]).

3.3. Characterization of $\left(w_{0}, \ell_{\infty}\right)$ and $\left(w_{0}, c_{0}\right)$.

Here we recall some results that are direct consequence of [1], Theorem 2.4], where we let $\sigma=\left(\sigma_{n}\right)_{n}$ with

$$
\begin{equation*}
\sigma_{n}=\sigma_{n}(A)=\sum_{v=0}^{\infty} 2^{v} \max _{2^{v} \leq k \leq 2^{v+1}-1}\left|\mathbf{a}_{n k}\right| \tag{5}
\end{equation*}
$$

for $A=\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$. From [1] we obtain the following.

Lemma 3.5.

i) We have $A \in\left(w_{0}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sigma \in \ell_{\infty} \tag{6}
\end{equation*}
$$

ii) $A \in\left(w_{0}, c_{0}\right)$ if and only if (6) and (2) hold.

4. On the solvability of the (SSE) $E_{\mathcal{T}}+F_{x}=F_{b}$ where \mathcal{T} is a triangle and $e \in F$

4.1. On the multipliers of some sets.

First we need to recall some well known results. Let y and z be sequences and let E and F be two subsets of ω, we then write

$$
M(E, F)=\{y \in \omega: y z \in F \text { for all } z \in E\}
$$

the set $M(E, F)$ is called the multiplier space of E and F. Recall the next well known results.
Lemma 4.1. Let E, \widetilde{E}, F and \widetilde{F} be arbitrary subsets of ω. Then
i) $M(E, F) \subset M(\widetilde{E}, F)$ whenever $\widetilde{E} \subset E$,
ii) $M(E, F) \subset M(E, \widetilde{F})$ whenever $F \subset \widetilde{F}$.

4.2. On the sequence spaces equations.

For $b \in U^{+}$and for any subset F of ω, we denote by $c l^{F}(b)$ the equivalence class for the equivalence relation R_{F} defined by $x R_{F} y$ if $F_{x}=F_{y}$ for $x, y \in U^{+}$. It can easily be seen that $c l^{F}(b)$ is the set of all $x \in U^{+}$ such that $x / b \in M(F, F)$ and $b / x \in M(F, F)$, (cf. [18]). We then have $c l^{F}(b)=c l^{M(F, F)}(b)$. For instance $c l^{c}(b)$ is the set of all $x \in U^{+}$such that $D_{x} c=D_{b} c$, that is, $s_{x}^{(c)}=s_{b}^{(c)}$. This is the set of all sequences $x \in U^{+}$such that $x_{n} \sim C b_{n}(n \rightarrow \infty)$ for some $C>0$. In [18] we denote by $c l^{\infty}(b)$ the class $c l^{\ell_{\infty}}(b)$. Recall that $c l^{\infty}(b)$ is the set of all $x \in U^{+}$, such that $K_{1} \leq x_{n} / b_{n} \leq K_{2}$ for all n and for some $K_{1}, K_{2}>0$. For $a, b \in U^{+}$, we define the set $S_{a, b}(E, F)=\left\{x \in U^{+}: E_{a}+F_{x}=F_{b}\right\}$ for $E, F \subset \omega$.

As we have just seen, for any given $b \in U^{+}$the solutions of the (SSE) $F_{x}=F_{b}$ are determined by $x \in c l^{F}(b)$. Then the new (SSE) $\mathcal{E}+F_{x}=F_{b}$ where \mathcal{E} is a linear space of sequences and $a \in U^{+}$can be considered as a perturbed equation. The question is: what are the conditions on \mathcal{E} under which the (SSE) $F_{x}=F_{b}$ and the perturbed equation have the same solutions?

Now we study some perturbed equations involving an operator represented by a triangle.

4.3. On the (SSE) with operators represented by a triangle.

Let $b \in U^{+}$, and E, F be two subsets of ω. We deal with the set $S_{b}\left(E_{\mathcal{T}}, F\right)$ of all the positive sequences that satisfy the (SSE) with operator

$$
\begin{equation*}
E_{\mathcal{T}}+F_{x}=F_{b} \tag{7}
\end{equation*}
$$

where \mathcal{T} is a triangle and $x \in U^{+}$is the unknown. The equation in (7) means for every $y \in \omega$, we have $y / b \in F$ if and only if there are $u, v \in \omega$ with $y=u+v$ such that $\mathcal{T} u \in E$ and $v / x \in F$. We assume $e \in F$. In the following we use the next two properties,

$$
\begin{equation*}
F \subset M(F, F) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
F \subset F_{1 / z} \text { for all } z \in U^{+} \text {that satisfy } z_{n} \rightarrow 1(n \rightarrow \infty) \tag{9}
\end{equation*}
$$

Definition 4.2. Let $b \in U^{+}$and let E, F be linear spaces of sequences. We say that the (SSE) defined in (7), or the set $S_{b}\left(E_{\mathcal{T}}, F\right)$ is regular if

$$
S_{b}\left(E_{\mathcal{T}}, F\right)=\left\{\begin{array}{cl}
c l^{F}(b), & \text { if } D_{1 / b} \mathcal{T}^{-1} \in(E, F), \tag{10}\\
\varnothing, & \text { if } D_{1 / b} \mathcal{T}^{-1} \notin(E, F) .
\end{array}\right.
$$

We recall the next result where we use the equivalence of $D_{1 / b} \mathcal{T}^{-1} \in(E, F)$ and $1 / b \in M\left(E_{\mathcal{T}}, F\right)$.
Lemma 4.3. [[14], Proposition 6.1, p. 94]
Let $b \in U^{+}$and \mathcal{T} be a triangle, let E, F be linear spaces of sequences with $e \in F$. Assume the space F satisfies the conditions in (8) and (9) and

$$
\begin{equation*}
M\left(E_{\mathcal{T}}, F\right) \subset M\left(E_{\mathcal{T}}, c_{0}\right) . \tag{11}
\end{equation*}
$$

Then the (SSE) defined in (7) is regular, that is,

$$
S_{b}\left(E_{\mathcal{T}}, F\right)=\left\{\begin{array}{cl}
c l^{F}(b), & \text { if } 1 / b \in M\left(E_{\mathcal{T}}, F\right), \tag{12}\\
\varnothing, & \text { if } 1 / b \notin M\left(E_{\mathcal{T}}, F\right) .
\end{array}\right.
$$

For any $b \in U^{+}$, if the perturbed equation $E_{\mathcal{T}}+F_{x}=F_{b}$ is regular, then it is equivalent to the (SSE) $F_{x}=F_{b}$. We may adapt the previous result using the notations of matrix transformations instead of the multiplier of sequence spaces. The proof of the next result follows from the equivalence of $z \in M\left(E_{\mathcal{T}}, \mathcal{F}\right)$ and $D_{z} \mathcal{T}^{-1} \in(E, \mathcal{F})$ for any given set \mathcal{F} of sequences. So we obtain the following result which is a direct consequence of Lemma 4.3.

Lemma 4.4. [[14], Corollary 6.1, p. 94]
Let $b \in U^{+}$and \mathcal{T} be a triangle and let E, F be linear spaces of sequences with $e \in F$. Assume the space F satisfies the conditions in (8) and (9) and

$$
\begin{equation*}
D_{z} \mathcal{T}^{-1} \in(E, F) \text { implies } D_{z} \mathcal{T}^{-1} \in\left(E, c_{0}\right) \text { for all } z \in U^{+} . \tag{13}
\end{equation*}
$$

Then the (SSE) defined in (7) is regular.

5. Application to the solvability of the (SSE) of the form $\left(E_{a}\right)_{T}+F_{x}=F_{b}$ where $F \in\left\{c, \ell_{\infty}\right\}$

Let T be a triangle and let

$$
\Theta=\left\{\left(\ell_{\infty}, c\right),\left(c_{0}, \ell_{\infty}\right),\left(c_{0}, c\right),\left(\ell^{p}, c\right),\left(\ell^{p}, \ell_{\infty}\right),\left(w_{0}, \ell_{\infty}\right)\right\}
$$

with $p \geq 1$. Let a, b be positive sequences and consider the (SSE)

$$
\begin{equation*}
\left(E_{a}\right)_{T}+F_{x}=F_{b}, \tag{14}
\end{equation*}
$$

where $(E, F) \in \Theta$. In the following we write $S_{E}^{F}(T)=S_{b}\left(\left(E_{a}\right)_{T}, F\right)$ where $E, F \subset \omega$, and more precisely we write $S_{\infty}^{c}(T)=S_{\ell_{\infty}}^{c}(T), S_{0}^{\infty}(T)=S_{c_{0}}^{\ell_{\infty}}(T), S_{0}^{c}(T)=S_{c_{0}}^{c}(T), S_{p}^{c}(T)=S_{\ell p}^{c}(T), S_{p}^{\infty}(T)=S_{\ell_{p}}^{\ell_{\infty}}(T)$ for $p \geq 1$, and $S_{w_{0}}^{\infty}(T)=S_{w_{0}}^{\ell_{\infty}}(T)$. So $S_{\infty}^{c}(T), S_{0}^{F}(T), S_{p}^{F}(T)$ and $S_{w_{0}}^{\infty}(T)$ are the sets of all positive sequences that satisfy the (SSE) $\left(s_{a}\right)_{T}+s_{x}^{(c)}=s_{b}^{(c)},\left(s_{a}^{0}\right)_{T}+F_{x}=F_{b},\left(\ell_{a}^{p}\right)_{T}+F_{x}=F_{b}$ where $F=c$, or ℓ_{∞} with $p \geq 1$ and $\left(W_{a}^{0}\right)_{T}+s_{x}=s_{b}$, respectively. From Lemma 4.4 we obtain the next result.

Theorem 5.1. Let $a, b \in U^{+}$, let T be a triangle and let $(E, F) \in \Theta$. We write \mathbf{S}_{T} for the set of all positive sequences x that satisfy the (SSE) in (14). Assume for every positive integer k there is an integer $i_{k}>k$ such that

$$
\begin{equation*}
\left(T^{-1}\right)_{n k}=0 \text { for all } n \geq i_{k} . \tag{15}
\end{equation*}
$$

Then the set \mathbf{S}_{T} is determined by (10), that is,

$$
\mathbf{S}_{T}=\left\{\begin{array}{cl}
c F^{F}(b), & \text { if } D_{1 / b} T^{-1} D_{a} \in(E, F), \\
\varnothing, & \text { if } D_{1 / b} T^{-1} D_{a} \notin(E, F) .
\end{array}\right.
$$

Proof. Let $\mathcal{T}=D_{1 / a} T$, then $\left(E_{a}\right)_{T}=E_{\mathcal{T}}$ and therefore the (SSE) in (14) is equivalent to the (SSE) $E_{\mathcal{T}}+F_{x}=$ F_{b}. From the characterizations of the classes $(E, F) \in \Theta$, and under the condition in (15), the condition $D_{z} T^{-1} D_{a} \in(E, F)$ holds if and only if $D_{z} T^{-1} D_{a} \in\left(E, c_{0}\right)$ for all $z \in U^{+}$. Since the conditions in (8) and (9) hold for $F=c$, or ℓ_{∞} we conclude by Lemma 4.4 with $\mathcal{T}=D_{1 / a} T$, that \mathbf{S}_{T} is regular. More precisely we consider the case $(E, F)=\left(\ell_{\infty}, c\right)$. By v) in Lemma 3.1 where $l_{k}=0$ for all k and using (15) we have $D_{z} T^{-1} D_{a} \in\left(\ell_{\infty}, c\right)$ if and only if $\lim _{n \rightarrow \infty}\left(D_{z} T^{-1} D_{a}\right)_{n k}=0$ for all k, and $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|\left(D_{z} T^{-1} D_{a}\right)_{n k}\right|=0$. So the condition $D_{z} T^{-1} D_{a} \in\left(\ell_{\infty}, c\right)$ implies $D_{z} T^{-1} D_{a} \in\left(\ell_{\infty}, c_{0}\right)$, for all $z \in U^{+}$, and Lemma 4.4 can be applied with $\mathcal{T}=D_{1 / a} T$. The other cases can be shown in a similar way.

To state the next results we use the sequence σ defined in Lemma 3.5 where A is a triangle L, so we obtain

$$
\begin{equation*}
\sigma_{n}=\sigma_{n}(L)=\sum_{v=0}^{v_{n}-1} 2^{v} \max _{2^{v} \leq k \leq 2^{v+1}-1}\left|L_{n k}\right|+2^{v_{n}} \max _{2^{v_{n}} \leq k \leq n}\left|L_{n k}\right| \tag{16}
\end{equation*}
$$

where for every n, v_{n} is an integer uniquely defined by $2^{v_{n}} \leq n \leq 2^{v_{n}+1}-1$. In the following we use the next conditions where T is a triangle

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n}\left|T_{n k}^{-1}\right| a_{k}=0 \tag{17}\\
& \sup _{n}\left(\frac{1}{b_{n}} \sum_{k=1}^{n}\left|T_{n k}^{-1}\right| a_{k}\right)<\infty \tag{18}\\
& \sup _{n}\left(\frac{1}{b_{n}^{q}} \sum_{k=1}^{n}\left|T_{n k}^{-1}\right|^{q} a_{k}^{q}\right)<\infty \text { with } q=p /(p-1),(p>1), \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{(n, k) \in \mathcal{X}}\left(\frac{1}{b_{n}}\left|T_{n k}^{-1}\right| a_{k}\right)<\infty, \tag{20}
\end{equation*}
$$

where we let $\chi=\{(n, k): k \leq n$ and $n \geq 1\}$. By Theorem 5.1 and using the characterization of each of the sets $(E, F) \in \Theta$ recalled in Lemma 3.1, Lemma 3.2 and Lemma 3.5 we obtain the next corollary.

Corollary 5.2. Let $a, b \in U^{+}$and let T be a triangle. Assume the condition in (15) holds. Then we have:
i) a) The solutions of the equation $\left(s_{a}\right)_{T}+s_{x}^{(c)}=s_{b}^{(c)}$ are determined by

$$
S_{\infty}^{c}(T)=\left\{\begin{array}{cl}
c l^{c}(b), & \text { if }(17) \text { holds }, \\
\varnothing, & \text { otherwise } .
\end{array}\right.
$$

b) The solutions of the equation $\left(s_{a}^{0}\right)_{T}+F_{x}=F_{b}$ with $F=c$, or ℓ_{∞} are determined by

$$
S_{0}^{F}(T)=\left\{\begin{array}{cc}
c l^{F}(b), & \text { if }(18) \text { holds }, \\
\varnothing, & \text { otherwise } .
\end{array}\right.
$$

ii) Let $F=c$, or ℓ_{∞}. Then the solutions of the equation $\left(\ell_{a}^{p}\right)_{T}+F_{x}=F_{b}$ with $p \geq 1$ are determined in the following way.
a) If $p>1$, then

$$
S_{p}^{F}(T)= \begin{cases}c l^{F}(b), & \text { if (19) holds } \\ \varnothing, & \text { otherwise }\end{cases}
$$

b) If $p=1$, then

$$
S_{1}^{F}(T)=\left\{\begin{array}{cc}
c l^{F}(b), & \text { if }(20) \text { holds } \\
\varnothing, & \text { otherwise }
\end{array}\right.
$$

iii) The solutions of the equation $\left(W_{a}^{0}\right)_{T}+s_{x}=s_{b}$ are determined by

$$
S_{w_{0}}^{\infty}(T)=\left\{\begin{array}{c}
c l^{\infty}(b), \text { if } \sup _{n}\left\{\sigma_{n}\left(D_{1 / b} T^{-1} D_{a}\right)\right\}<\infty, \\
\varnothing, \\
\text { otherwise }
\end{array}\right.
$$

References

[1] Başar F., Malkowsky, E., Bilâl A., Matrix transformations on the matrix domains of triangles in the spaces of strongly C_{1} summable and bounded sequences Publicationes Math. 78 (2008),193-213.
[2] de Malafosse, B., On some BK space, Int. J. of Math. and Math. Sc. 28 (2003), 1783-1801.
[3] de Malafosse, B., Sum of sequence spaces and matrix transformations, Acta Math. Hung. 113 (3) (2006), 289-313.
[4] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 54, 1 (2012), 39-52.
[5] de Malafosse, B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form $B(r, s)$. Commun. Math. Anal. 13, 1 (2012), 35-53.
[6] de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013), 299-314.
[7] de Malafosse, B., Solvability of sequence spaces equations using entire and analytic sequences and applications, J. Ind. Math. Soc. 81 N° 1-2, (2014), 97-114.
[8] de Malafosse, B., On sequence spaces equations of the form $E_{T}+F_{x}=F_{b}$ for some triangle T, Jordan J. Math. Stat. 8 (1) (2015) 79-105.
[9] de Malafosse, B., On the spectra of the operator of the first difference on the spaces W_{τ} and W_{τ}^{0} and application to matrix transformations, Gen. Math. Notes 22, 2 (2014) 7-21.
[10] de Malafosse, B., Some general results on the solvability of sequence spaces equations with applications, Submitted in Malaysian J. Math.
[11] de Malafosse, B., Solvability of sequence spaces equations of the form $\left(E_{a}\right)_{\Delta}+F_{x}=F_{b}$, Fasc. Math. 55 (2015), 109-131.
[12] de Malafosse, B., New results on the sequence spaces equations using the operator of the first difference, Acta math. Univ. Comen. $86 \mathrm{n}^{\circ} 2$ (2017) 227-242.
[13] de Malafosse, B., Application of the infinite matrix theory to the solvability of sequence spaces inclusion equations with operators, to appear in Ukrainian Math. J.
[14] de Malafosse, B., Malkowsky, E., Matrix transformations between sets of the form W_{ξ} and operators generators of analytic semigroups, Jordan J. math. stat. 1 (1) (2008) 51-67.
[15] de Malafosse, B., Malkowsky, E., On the solvability of certain (SSIE) with operators of the form B(r,s), Math. J. Okayama. Univ. 56 (2014), 179-198.
[16] de Malafosse, B., Malkowsky, E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method Antartica J. Math. 10 (6) (2013), 589-609.
[17] de Malafosse, B., Rakočević V., Calculations in new sequence spaces and application to statistical convergence, Cubo A 12 (3), (2010), 117-132.
[18] de Malafosse, B., Rakočević V., Matrix transformations and sequence spaces equations. Banach J. Math. Anal. 7 (2) (2013), 1-14.
[19] Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Math. Forum 3, (2008) $\mathrm{n}^{\circ} 19$, 911-927.
[20] Malkowsky, E., The continuous duals of the spaces $c_{0}(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ, Acta Sci. Math. (Szeged) 61 (1995), 241-250.
[21] Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematički institut SANU 9 (17) (2000), 143-243.
[22] Maddox, I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
[23] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

[^0]: 2010 Mathematics Subject Classification. Primary 40H05; Secondary 46A45
 Keywords. BK space, matrix transformations, multiplier of sequence spaces, sequence spaces equations with operator
 Received: 16 june 2018; Accepted: 20 September 2018
 Communicated by Eberhard Malkowsky
 Research supported by the Lebanese University
 Email addresses: bdemalaf@wanadoo.fr (Bruno de Malafosse), ali.fares@ul.edu.lb (Ali Fares), ali. ayad@ul. edu.lb (Ali Ayad)

