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Abstract. In this paper, we apply the results stated in [19] to the solvability of the sequence spaces equations
(SSE)E+Fx = Fb, whereE,F are linear spaces of sequences and b, x are positive sequences (x is the unknown).
In this way, we solve the (SSE) of the form (Ea)G(α,β) + Fx = Fb, where G

(
α, β

)
is a factorable triangle matrix

defined by
[
G

(
α, β

)]
nk = αnβk for k ≤ n and (E,F) ∈ {(`∞, c) , (c0, `∞) , (c0, c) , (`p, c) , (`p, `∞) , (w0, `∞)}with p ≥ 1.

Then we deal with some (SSE) involving the matrices C (λ), C1 and Nq. Finally, we solve the (SSE) with
operator of the form (Ea)Σ2 + Fx = Fb.

1. Introduction

Let ω be the set of all complex sequences y = (yn)n≥1. Let U (resp. U+) be the set of sequences y such
that yn , 0 (resp. yn > 0) for all n ≥ 1. Denote by `∞, c and c0 the sets of all bounded, convergent and null

sequences, respectively. For 1 ≤ p < ∞, denote by `p the set of sequences y ∈ ω such that
∞∑

n=1

∣∣∣yn

∣∣∣p < ∞. For

y ∈ ω and a ∈ U, define the sequence y/a =
(
yn/an

)
n≥1. In particular, 1/a = e/a, where e = 1 is the sequence

with en = 1 for all n. For a ∈ U+ and E is any subset of ω, we put:

Ea =
{
y ∈ ω : y/a ∈ E

}
.

In [2], the sets sa, s0
a and s(c)

a were defined for a ∈ U+ by Ea and E = `∞, c0, c, respectively. In [3], the
sum Ea + Fb and the product Ea ∗ Fb were defined where E, F are any of the symbols s, s0, or s(c). In [6],
sequences spaces inclusion equations (SSIE) of the form Gb ⊂ Ea + Fx are solved, where a, b ∈ U+ and E, F,
G ∈

{
s0, s(c), s

}
and some applications were given to sequence spaces inclusions equations with operators.

Recall that the spaces w∞ and w0 of strongly bounded and summable sequences are the sets of all y such

that

n−1
n∑

k=1

∣∣∣yk

∣∣∣
n

is bounded and tends to zero respectively. These spaces were studied by Maddox [23]
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and Malkowsky, Rakočević [22]. In [9, 14] were given some properties of well known operators defined by
the sets Wa = (w∞)a and W0

a = (w0)a.
In this paper, we deal with special sequence spaces equations (SSE), which are determined by an identity,

for which each term is a sum or a sum of products of sets of the form (Ea)T and
(

E f (x)

)
T

where f maps U+ to
itself, E is any linear space of sequences and T is a triangle. Some results on (SSE) and (SSIE) were stated
in [4–8, 12, 15, 16, 18, 20]. In [6], we dealt with the (SSIE) with operators Ea + (Fx)∆ ⊂ s(c)

x where E and F are
any of the sets c0, c, or s1. In [15], we determined the set of all positive sequences x for which the (SSIE)(
s(c)

x

)
B(r,s)
⊂

(
s(c)

x

)
B(r′,s′)

holds, where r, r′, s′ and s are real numbers, and B(r, s) is the generalized operator of
the first difference defined by (B(r, s)y)n = ryn + syn−1 for all n ≥ 2 and (B(r, s)y)1 = ry1. In this way, we
determined the set of all positive sequences x for which

(
ryn + syn−1

)
/xn → l implies

(
r′yn + s′yn−1

)
/xn → l′

(n→∞) for all y and for some scalars l and l′. In [8], we used the sets of analytic and entire sequences

denoted byΛ and Γ and defined by sup
n≥1

(∣∣∣yn

∣∣∣1/n) < ∞ and lim
n→∞

(∣∣∣yn

∣∣∣1/n) = 0, respectively. Then we dealt with

a class of (SSE) with operators of the form ET + Fx = Fb, where T is either ∆ or Σ and E is any of the sets c0,
c, `∞, `p, (p ≥ 1), w0, Γ, or Λ and F = c, `∞ or Λ. In [11], we solved the (SSE) defined by (Ea)∆ + s(c)

x = s(c)
b

where E is either c0, or `p, and the (SSE) (Ea)∆ + s0
x = s0

b where E is either c, or `∞. In [10, 13] we dealt with
the sequence spaces inclusion equations (SSIE) defined by Fb ⊂ Ea + F′x where a and b are positive sequences
and E, F and F′ are linear subspaces of ω and we solved the (SSE) defined by Ea + Fx = Fb when e < F.

In [19], we extended some of the results stated in [8] and we solved a new class of (SSE) of the form
(Ea)T + Fx = Fb where (E,F) ∈ Θ and

Θ =
{

(`∞, c) , (c0, `∞) , (c0, c) , (`p, c) , (`p, `∞) , (w0, `∞)
}
,

with p ≥ 1 and T is a triangle whose the inverse has finite columns.

The paper is organized as follows. In Section 2, we recall the notions of sequence spaces, matrix
transformations and triangles. Then, we define the set W0

a for a ∈ U+. We also recall some results on
matrix transformations [1] and sequence spaces equations studied in [19]. In Section 3, we deal with the
solvability of some perturbed equations of the form (Ea)G(α,β) + Fx = Fb, where a, b, α, β ∈ U+, (E,F) ∈ Θ and
G

(
α, β

)
= DαΣDβ is a factorable matrix. Then we deal with the (SSE) involving some factorable matrices

of the form C (λ), C1 or Nq. Finally, in Section 4, we apply the previous results to the (SSE) involving the
operator Σ2.

2. Preliminaries and previous results

For any given infinite matrix A = (ank)n,k≥1, we define the operators An = (ank)k≥1 for any integer n ≥ 1,

by Any =

∞∑
k=1

ankyk, where y = (yn)n≥1, and the series are assumed convergent for all n. So we are led to the

study of the operator A defined by Ay =
(
Any

)
n≥1 mapping between sequence spaces. When A maps E into

F, where E and F are subsets of ω, we write A ∈ (E,F), (cf. [23, 24]). For any subset F of ω, the domain of A
in F is defined by:

FA =
{
y ∈ ω : Ay ∈ F

}
.

For a = (an)n≥1 ∈ ω we define the diagonal matrix Da by [Da]nn = an for all n. Let E be any subset of ω and
a ∈ U+, then

Ea = Da ∗ E =
{
y ∈ ω : y/a ∈ E

}
.

For a ∈ U+, we define the sets sa, s0
a , s(c)

a and `p
a (for p ≥ 1) as follows (cf. [2]):

sa = Da ∗ `∞, s0
a = Da ∗ c0, s(c)

a = Da ∗ c, `p
a = Da ∗ `

p.
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For a = (Rn)n≥1 with R > 0, we write sR, s0
R, s(c)

R , and `p
R for the sets sa, s0

a , s(c)
a and `p

a , respectively. When R = 1,
we obtain s1 = `∞, s0

1 = c0 and s(c)
1 = c. Recall that

(c0, `∞) = (c, `∞) = (`∞, `∞) = S1,

where S1 is the set of infinite matrices A = (ank)n,k≥1 satisfying:

sup
n

 ∞∑
k=1

|ank|

 < ∞. (1)

For a ∈ U+, we define the set of sequences that are a-strongly convergent to zero by

W0
a = (w0)a =

y ∈ ω : lim
n→∞

n−1
n∑

k=1

∣∣∣yk

∣∣∣ /ak

 = 0

 ,
(cf. [9, 14, 17]). If a = (rn)n≥1, then, the set W0

a is denoted by W0
r . For r = 1, we obtain the well known set

w0 =

y ∈ ω : lim
n→∞

n−1
n∑

k=1

∣∣∣yk

∣∣∣ = 0


called the space of sequences that are strongly summable to zero by the Cesàro method (cf. [21]). We recall some
results that are direct consequence of [[1], Theorem 2.4], where we let σ = (σn)n≥1 with

σn = σn (A) =

∞∑
ν=0

2ν max
2ν≤k≤2ν+1−1

|ank| , (2)

for A = (ank)n,k≥1. From [1] we obtain the following lemma.

Lemma 2.1.

i) We have A ∈ (w0, `∞) if and only if

σ ∈ `∞. (3)

ii) A ∈ (w0, c0) if and only if (3) holds and lim
n→∞

ank = 0 for all k.

2.1. Triangles
We call triangle every infinite matrix T = (tnk)n,k≥1 such that tnk = 0 for all n < k and tnn , 0 for all n ≥ 1.

For any λ ∈ U, let ∆ (λ) and C (λ) be the triangles defined by (see for instance [2]):

[∆ (λ)]nk =


λn for k = n
−λn−1 for k = n − 1

0 for k , n − 1 and k , n (n ≥ 1)

and

[C (λ)]n,k =

{
1/λn for k ≤ n

0 otherwise

Note that C (λ) is the inverse of ∆ (λ). Let e ∈ U, defined by en = 1 for all n ≥ 1. In all that follows we use the
convention an = 0 for all n ≤ 0. Then, ∆ = ∆ (e) is the well known operator of the first-difference defined by

∆nx = xn − xn−1 for all n ≥ 1.

Recall that the operator ∆ is invertible and its inverse is usually written Σ = C (e). For any λ ∈ U, we
have ∆(λ) = ∆Dλ and its inverse is determined by C(λ) = (∆(λ))−1 = D1/λΣ.
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2.2. Solvability of the (SSE) (Ea)T + Fx = Fb where F ∈ {c, `∞}
In this part we recall some results stated in [19].

Theorem 2.2. [[19], Theorem 5.1 p. 5128]
Let a, b ∈ U+, T be a triangle and let (E,F) ∈ Θ. Assume for every positive integer k, there is an integer ik > k such
that

T−1
nk = 0 for all n ≥ ik. (4)

Then the set of all the solutions of the (SSE):
(Ea)T + Fx = Fb

is given by:

ST =

{
clF (b) , if D1/bT−1Da ∈ (E,F) ,
∅, if D1/bT−1Da < (E,F) .

To state the next results, we use the sequence σ defined in Lemma 2.1 where A is a triangle L, so we
obtain

σn = σn (L) =

νn−1∑
ν=0

2ν max
2ν≤k≤2ν+1−1

|Lnk| + 2νn max
2νn≤k≤n

|Lnk| (5)

where for every n, νn is an integer uniquely defined by 2νn ≤ n ≤ 2νn+1
− 1. In the following we use the next

conditions where T is a triangle

lim
n→∞

1
bn

n∑
k=1

∣∣∣T−1
nk

∣∣∣ ak = 0, (6)

sup
n

 1
bn

n∑
k=1

∣∣∣T−1
nk

∣∣∣ ak

 < ∞, (7)

sup
n

 1
bq

n

n∑
k=1

∣∣∣T−1
nk

∣∣∣q aq
k

 < ∞with q = p/
(
p − 1

)
, (p > 1), (8)

and

sup
n≥k

( 1
bn

∣∣∣T−1
nk

∣∣∣ ak

)
< ∞. (9)

Theorem 2.3. [[19], Corollary 5.2 p. 5129]
Let a, b ∈ U+ and let T be a triangle such that the condition in (4) holds. Then we have:

i) a) The solutions of the equation (sa)T + s(c)
x = s(c)

b are determined by

Sc
∞

(T) =

{
clc (b) , if (6) holds,
∅, otherwise.

b) The solutions of the equation
(
s0

a

)
T

+ Fx = Fb with F = c, or `∞ are determined by

SF
0 (T) =

{
clF (b) , if (7) holds,
∅, otherwise.
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ii) Let F = c, or `∞. Then the solutions of the equation
(
`p

a

)
T

+ Fx = Fb with p ≥ 1 are determined in the following
way.

a) If p > 1, then

SF
p (T) =

{
clF (b) , if (8) holds,
∅, otherwise.

b) If p = 1, then

SF
1 (T) =

{
clF (b) , if (9) holds,
∅, otherwise.

iii) The solutions of the equation
(
W0

a

)
T

+ sx = sb are determined by

S∞w0
(T) =

{
cl∞ (b) , if supn

{
σn

(
D1/bT−1Da

)}
< ∞,

∅, otherwise.

3. Solvability of some (SSE) that involve the factorable matrix

In this section, we deal with the solvability of the (SSE):

(Ea)G(α,β) + Fx = Fb

where a, b, α, β ∈ U+ and (E,F) ∈ Θ. Then we apply these results to the (SSE) involving the matrices C (λ),
C1 or Nq. Here, we consider the factorable matrix defined, for α, β ∈ U+, by

G
(
α, β

)
= DαΣDβ.

The matrix G
(
α, β

)
is the triangle defined by

[
G

(
α, β

)]
nk = αnβk for k ≤ n, for all n.

3.1. On the (SSE) of the form (Ea)G(α,β) + Fx = Fb where (E,F) ∈ Θ.

In this part, among other things we determine the set Sc
∞

(G) of all positive sequences x that satisfy
(sa)G(α,β) + s(c)

x = s(c)
b . This set is associated with the next statement. For every y ∈ ω, we have yn/bn → L1

(n→∞) if and only if there are two sequences u, v with y = u + v such that

sup
n

αn

an

∣∣∣∣∣∣∣
n∑

k=1

βkuk

∣∣∣∣∣∣∣
 < ∞ and

vn

xn
→ L2 (n→∞)

for some scalars L1 and L2. Similarly, the set S∞p (G),
(
p > 1

)
, is associated with the equation

(
`p

a

)
G(α,β) +sx = sb

and with the next statement. The condition
∣∣∣yn

∣∣∣ /bn ≤ K1 holds if and only if there are two sequences u, v

with y = u + v such that
∞∑

n=1

∣∣∣∣∣∣∣αna−1
n

 n∑
k=1

βkuk


∣∣∣∣∣∣∣
p

< ∞ and |vn| /xn ≤ K2 for all n, for all y and for some scalars

K1, K2 > 0. To state the next results, we let

γ = a/α and τn =
(
γn + γn−1

)
/(bnβn).

We obtain the following result.
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Theorem 3.1. Let a, b, α, β ∈ U+. Then we have:

i) The solutions of the (SSE) (sa)G(α,β) + s(c)
x = s(c)

b are determined by

Sc
∞

(G) =

{
clc (b) , if lim

n→∞
τn = 0,

∅, otherwise.

ii) Let F = c, or `∞. Then the solutions of the (SSE)
(
`p

a

)
G(α,β) + Fx = Fb with p ≥ 1 and

(
s0

a

)
G(α,β) + Fx = Fb

satisfy SF
p (G) = SF

0 (G) and are determined by

SF
p (G) =

{
clF (b) , if supn≥1 τn < ∞,
∅, otherwise.

iii) The solutions of the (SSE) defined by
(
W0

a

)
G(α,β) + sx = sb are determined by

S∞w0
(G) =

{
cl∞ (b) , if supn≥1 (nτn) < ∞,
∅, otherwise.

Proof. Remark that G−1 (
α, β

)
satisfies the condition in (4). Indeed, the matrix G−1 (

α, β
)

is the triangle defined
by

G−1 (
α, β

)
=

(
DαΣDβ

)−1
= D1/β∆D1/α,

whose the nonzero entries are given by[
G−1 (

α, β
)]

nn
= 1/(αnβn) and

[
G−1 (

α, β
)]

n,n−1
= −1/(αn−1βn)

for all n ≥ 1 with
[
G−1 (

α, β
)]

1,0
= 0. Then we have

D1/bG−1 (
α, β

)
Da = D1/(bβ)∆Da/α,

that is, [
D1/bG−1 (

α, β
)

Da

]
nn

= γn
(
βnbn

)−1 and
[
D1/bG−1 (

α, β
)

Da

]
n,n−1

= −γn−1
(
βnbn

)−1

for all n ≥ 1 with
[
D1/bG−1 (

α, β
)

Da

]
1,0

= 0. Trivially we have

lim
n→∞

[
D1/bG−1 (

α, β
)

Da

]
nk

= 0 for all k ≥ 1. (10)

i) follows from Theorem 2.3 where T = G
(
α, β

)
and the condition in (6) is equivalent to lim

n→∞
τn = 0.

ii) The case of SF
0 (G) follows from Theorem 2.3 where the condition in (7) is equivalent to sup

n
τn < ∞.

Now, we study the case of the set SF
p (G).

• Case p > 1. Here, the condition in (8) is equivalent to

sup
n≥1

{(
γn−1

bnβn

)q

+

(
γn

bnβn

)q}
< ∞with q = p/

(
p − 1

)
. (11)

It can easily be seen that the condition in (11) holds if and only if sup
n
τn < ∞, and we conclude by

Theorem 2.3.
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• The case p = 1 follows from the equivalence of the condition in (9) and the conditions(
γn−1b−1

n β
−1
n

)
n≥1
∈ `∞ and γ/(bβ) ∈ `∞.

But these two last conditions are equivalent to sup
n
τn < ∞ and we conclude by Theorem 2.3. This

completes the proof of ii).

iii) Here we need to simplify the sum σn defined in (5) with L = D1/bG−1 (
α, β

)
Da. Let νn be the integer

defined by 2νn ≤ n ≤ 2νn+1
− 1 for all n. If 2νn = n, then we obtain

σn = σ(1)
n = 2νn−1

∣∣∣∣[D1/bG−1 (
α, β

)
Da

]
n,n−1

∣∣∣∣ + 2νn
[
D1/bG−1 (

α, β
)

Da

]
n,n

and

σn = σ(1)
n =

n
bnβn

(1
2
γn−1 + γn

)
.

Now, let
µn = max

(
γn−1/bnβn, γn/bnβn

)
.

Then if 2νn = n − 1, we have σn = σ(2)
n = (n − 1)µn. If 2νn < n − 1, then we have σn = σ(3)

n = 2νnµn. Since we
have τn/2 ≤ µn ≤ τn and (n + 1) /2 ≤ 2νn ≤ n, there is K > 0 such that Knτn ≤ σ

(i)
n ≤ nτn for i = 1, 2, 3 and for

all n. Then it can easily be seen that
(
σ(i)

n

)
n≥1
∈ `∞ for i = 1, 2, 3 if and only if (nτn)n≥1 ∈ `∞. We conclude by

Lemma 2.1 and Theorem 2.2. This completes the proof of the theorem.

In all that follows we write E+ = E ∩ U+ for any given subset E of ω. The previous results lead to the
next remarks.

Remark 3.2. Let F be either c, or `∞ and for any given b ∈ U+, letAp
b , (resp. A0

b) be the set of all sequences a ∈ U+

such that the (SSE) Fx = Fb and the perturbed equation
(
`p

a

)
Σ

+ Fx = Fb with p ≥ 1, (resp.
(
s0

a

)
Σ

+ Fx = Fb) have the
same solutions. By Theorem 3.1 ii), since τn = (an + an−1) b−1

n , we obtain

A
p
b = A0

b = s+
b ∩ s+

(bn+1)n≥1
= s+

(max(bn,bn+1))n≥1
.

Remark 3.3. Let b ∈ U+ and letAσ
b be the set of all sequences a ∈ U+ such that the (SSE) sx = sb and the perturbed

equation
(
W0

a

)
Σ

+ sx = sb have the same set of solutions. By Theorem 3.1 iii), it can easily be seen that

A
σ
b = s+

(bn/n)n≥1
∩ s+

(bn+1/(n+1))n≥1
.

In the case when a/α is monotone, we obtain the next results.

Corollary 3.4. Let a, b, α, β ∈ U+ and assume that either γ = a/α, or bβ is a nondecreasing sequence. Then we have:

i) The solutions of the (SSE) (sa)G(α,β) + s(c)
x = s(c)

b are determined by

Sc
∞

(G) =

 clc (b) , if
γ

bβ
∈ c0,

∅, otherwise.

ii) Let F = c, or `∞. The solutions of the (SSE)
(
s0

a

)
G(α,β) + Fx = Fb and

(
`p

a

)
G(α,β) + Fx = Fb are determined by

SF
0 (G) and SF

p (G). We have SF
0 (G) = SF

p (G) with
(
p ≥ 1

)
and

SF
p (G) =

 clF (b) , if
γ

bβ
∈ `∞,

∅, otherwise.
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Corollary 3.5. Let a, b, α, β ∈ U+ and assume that either γ = a/α, or bβ is a nondecreasing sequence. Then the
solutions of the (SSE)

(
W0

a

)
G(α,β) + sx = sb are determined by

S∞
w0

(G) =

 cl∞ (b) , if
(
n
γn

bnβn

)
n≥1
∈ `∞,

∅, otherwise.

3.2. Application to the (SSE) involving the operators C (λ), and the operator of the weighted means Nq

In this part, we consider the operators C (λ), or Nq that are factorable matrices determined in the
following way. We have C (λ) = G (1/λ, e) for λ ∈ U+, and for any given positive sequence q, we let

Qn =

n∑
k=1

qk and Nq = G
(
1/Q, q

)
. So the nonzero entries of the triangle Nq are given by

[
Nq

]
nk

= qk/Qn with

k ≤ n, for all n, and Nq is called the matrix of the weighted means. We use the notation

υn = (λnan + λn−1an−1) /bn.

As a direct consequence of Theorem 3.1, we obtain the following results.

Corollary 3.6. Let a, b, λ ∈ U+. Then we have:

i) The solutions of the (SSE) (sa)C(λ) + s(c)
x = s(c)

b are determined by

Sc
∞

(C (λ)) =

{
clc (b) , if lim

n→∞
υn = 0,

∅, otherwise.

ii) Let F = c, or `∞. The solutions of the (SSE)
(
s0

a

)
C(λ)

+Fx = Fb and
(
`p

a

)
C(λ)

+Fx = Fb with p ≥ 1, are determined

by SF
0 (C (λ)) and SF

p (C (λ)). We have SF
p (C (λ)) = SF

0 (C (λ)) and

SF
p (C (λ)) =

 clF (b) , if sup
n≥1

υn < ∞,

∅, otherwise.

iii) The solutions of the (SSE) defined by
(
W0

a

)
C(λ)

+ sx = sb are determined by

S∞w0
(C (λ)) =

 cl∞ (b) , if sup
n≥1

(nυn) < ∞,

∅, otherwise.

Remark 3.7. For a, b, q ∈ U+, the sets Sc
∞

(
Nq

)
and SF

p

(
Nq

)
= SF

0

(
Nq

)
for F = c, or `∞ can be obtained as above

replacing υn by
ρn = (anQn + an−1Qn−1) /qnbn.

Under some additional hypotheses and using Corollary 3.5, we obtain more simple expressions for
S∞

w0
(C (λ)) and S∞

w0

(
Nq

)
that are stated as follows.

Corollary 3.8. Let a, b, λ, q ∈ U+. Then we have:

i) If either aλ, or b is a nondecreasing sequence, then the set S∞
w0

(C (λ)) of all the solutions of the (SSE)
(
W0

a

)
C(λ)

+

sx = sb is determined by

S∞
w0

(C (λ)) =

 cl∞ (b) , if
(
nλn

an

bn

)
n≥1
∈ `∞,

∅, otherwise.
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ii) If either a, or bq is a nondecreasing sequence, then the set S∞
w0

(
Nq

)
of all the solutions of the (SSE)

(
W0

a

)
Nq

+sx = sb

is determined by

S∞
w0

(
Nq

)
=

 cl∞ (b) , if
(
n

Qn

qn

an

bn

)
n≥1
∈ `∞,

∅, otherwise.

As a direct consequence of Corollary 3.6 for λ = e, we obtain the next result.

Corollary 3.9. Let a, b ∈ U+.

i) The (SSE) (sa)Σ + s(c)
x = s(c)

b has solutions if and only if lim
n→∞

an−i/bn = 0 for i = 0, or 1, that are determined by
Sc
∞

(Σ) = clc (b).
ii) Let F = c, or `∞. Then the sets SF

p (Σ) and SF
0 (Σ) of all the solutions of the (SSE)

(
`p

a

)
Σ

+ Fx = Fb and(
s0

a

)
Σ

+ Fx = Fb, satisfy SF
p (Σ) = SF

0 (Σ) for p ≥ 1. Then the (SSE)
(
s0

a

)
Σ

+ Fx = Fb has solutions if and only if
sup

n
(an−i/bn) < ∞ for i = 0, or 1, that are determined by SF

0 (Σ) = clF (b).

iii) The (SSE)
(
W0

a

)
Σ

+ sx = sb has solutions if and only if sup
n

(nan−i/bn) < ∞ for i = 0, or 1, that are determined

by S∞
w0

(Σ) = cl∞ (b).

As a direct consequence of Corollary 3.8, we obtain the next result.

Remark 3.10. Let b, q ∈ U+ and let AN
b be the set of all positive nondecreasing sequences a such that the equation

sx = sb and the perturbed equation
(
W0

a

)
Nq

+ sx = sb have the same solutions. By Corollary 3.8, we obtain

A
N
b = s+( bnqn

nQn

)
n≥1

.

Using Corollary 3.8 for a = e, we obtain the next result.

Corollary 3.11. Let b, λ, q ∈ U+. Then we have:
i) If λ is a nondecreasing sequence, then the (SSE) sx = sb and the perturbed equation (w0)C(λ) + sx = sb have the

same solutions if and only if
(
nλnb−1

n

)
n≥1
∈ `∞.

ii) The (SSE) sx = sb and the perturbed equation (w0)Nq
+ sx = sb have the same solutions if and only if(

nQnb−1
n q−1

n

)
n≥1
∈ `∞.

Remark 3.12. Let b ∈ U+ and let a be a nondecreasing sequence. From Corollary 3.9 iii) and Corollary 3.8 with
λ = e, we can easily see that the (SSE) sx = sb and the perturbed equation

(
W0

a

)
Σ

+ sx = sb have the same solutions if
and only if (nan/bn)n≥1 ∈ `∞. For a, b ∈ U+ where b is a nondecreasing sequence the previous result remains true. In
this way, for b = e, we may notice that the solutions of the (SSE)

(
W0

a

)
Σ

+ sx = `∞ and sx = `∞ are equivalent if and
only if a ∈ s(1/n)n≥1

.

Example 3.13. Let r, u > 0. Using Corollary 3.8 (i), the set S∞
w0

(C1) of all the solutions of the (SSE)
(
W0

r

)
C1

+ sx = su

is determined by

S∞
w0

(C1) =

{
cl∞ (u) , if r < u,
∅, if r ≥ u.

Example 3.14. Let ξ > 0. Using Corollary 3.8 (i) and the fact that(
nλn

an

bn

)
n≥1

=

(
n2

nξ

)
n≥1
∈ `∞ if and only if ξ ≥ 2,

the (SSE) (w0)C1
+ sx = s(nξ)n≥1

has solutions if and only if ξ ≥ 2.
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4. On the (SSE) involving the operator Σ2

In this section, we solve the (SSE) with operator of the form (Ea)Σ2 +Fx = Fb where a, b ∈ U+ and (E,F) ∈ Θ.
We give an extension of i) and ii) in Corollary 3.9 and we solve the (SSE) defined by (sa)Σ2 + s(c)

x = s(c)
b ,(

`p
a

)
Σ2

+ Fx = Fb and
(
s0

a

)
Σ2

+ Fx = Fb, with F = c, or `∞. It can easily be seen that the nonzero entries of

the triangle Σ2 are defined by
(
Σ2

)
nk

= n − k + 1 for k ≤ n for all n. For instance the (SSE)
(
s0

a

)
Σ2

+ s(c)
x = s(c)

b
is equivalent to the next statement. For every y ∈ ω, we have yn/bn → l if and only if there are u, v ∈ ω

with y = u + v such that

 n∑
k=1

kun−k+1

 /an → 0 and vn/xn → l′ (n→∞) for some scalars l and l′. As a direct

consequence of Theorem 2.3, we obtain the next result.

Corollary 4.1. Let a, b ∈ U+. Then we have:

i) The solutions of the (SSE) (sa)Σ2 + s(c)
x = s(c)

b are determined by

Sc
∞

(
Σ2

)
=

{
clc (b) , if (an−i/bn)n≥1 ∈ c0 for i = 0, 1, 2,
∅, otherwise.

ii) Let F = c, or `∞. Then the sets SF
p

(
Σ2

)
and SF

0

(
Σ2

)
of all the solutions of the (SSE)

(
`p

a

)
Σ2

+ Fx = Fb and(
s0

a

)
Σ2

+ Fx = Fb, satisfy SF
p

(
Σ2

)
= SF

0

(
Σ2

)
for p ≥ 1 and

SF
p

(
Σ2

)
=

{
clF (b) , if (an−i/bn)n≥1 ∈ `∞ for i = 0, 1, 2,
∅, otherwise.

Proof. First it can easily be seen that the inverse of Σ2 is the trangle ∆2 whose the nonzero entries are
determined by

(
∆2

)
nn

= 1 for all n,
(
∆2

)
n,n−1

= −2 for n ≥ 2, and
(
∆2

)
n,n−2

= 1 for n ≥ 3. Then ∆2 satisfies the
condition in (4). So the proofs of i) and ii) are direct consequences of Theorem 2.3. Since a, b are positive
sequences, the proof of i) follows from the equivalence of the conditions lim

n→∞
(an−2 + 2an−1 + an) /bn = 0 and

lim
n→∞

(an−i/bn) = 0 for i = 0, 1, 2, and the proof of ii) follows from the equivalence of each of the conditions

sup
n≥1

{
(an−2 + 2an−1 + an) b−1

n

}
< ∞, sup

n≥1

{(
aq

n−2 + 2qaq
n−1 + aq

n

)
b−q

n

}
< ∞

and sup
n≥1

(an−i/bn) < ∞ for i = 0, 1, 2.

Example 4.2. As a direct consequence of Corollary 4.1 ii), the set S of all positive sequences a for which we have the
equivalence of the perturbed equation

(
s0

a

)
Σ2

+ s(c)
x = s(c)

b and the equation s(c)
x = s(c)

b is determined by

S = s+
b ∩ s+

(bn+1)n≥1
∩ s+

(bn+2)n≥1
.

Example 4.3. As a direct consequence of Corollary 4.1 ii), it can easily be shown that the (SSE) defined by(
`p

(1/n!)n≥1

)
Σ2

+ s(c)
x = s(c)

(nh(n!)−1)n≥1

for reals p and h with p > 1 and h > 0 has solutions if and only if h ≥ 2.

Remark 4.4. As a direct consequence of Corollary 4.1 ii) for a = e, the (SSE) defined by (c0)Σ2 + sx = sb and
`p

Σ2 + sx = sb, (p ≥ 1) are equivalent. More precisely, each of these (SSE) has solutions if and only if 1/b ∈ l∞. As
a direct consequence of Corollary 4.1 i) for a = e, the (SSE) (`∞)Σ2 + s(c)

x = s(c)
b has solutions if and only if bn → ∞

(n→∞).
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