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Abstract. Given any sequence z = (zn)n≥1 of positive real numbers and any set E of complex sequences,
we write Ez for the set of all sequences y =

(
yn

)
n≥1 such that y/z =

(
yn/zn

)
n≥1 ∈ E; in particular, s0

z denotes
the set of all sequences y such that y/z tends to zero. Here, we deal with some extensions of sequence
spaces inclusion equations (SSIE) and sequence spaces equations (SSE) with operator. They are determined by an
inclusion or identity each term of which is a sum or a sum of products of sets of the form (χa)Λ and (χx)Λ where χ
is any of the symbols s, s0, or s(c), a is a given sequence in U+, x is the unknown, and Λ is an infinite matrix.
Here, we explicitely calculate the inverse of the triangle B (r, s, t) represented by the operator defined by(
B (r, s, t) y

)
1 = ry1,

(
B (r, s, t) y

)
2 = ry2 + sy1 and

(
B (r, s, t) y

)
n = ryn + syn−1 + tyn−2 for all n ≥ 3. Then we

determine the set of all x that satisfy the (SSIE) (χx)B̃(r,s,t) ⊂ χx, and the (SSE) (χx)B̃(r,s,t) = χx, where χ ∈
{
s, s0}

and ˜B (r, s, t) is the infinite tridiagonal matrix obtained from B (r, s, t) by deleting its first row. For χ = s0 the
solvability of the (SSE) (χx)B̃(r,s,t) = χx consists in determining the set of all x ∈ U+ for which

ryn+1 + syn + tyn−1

xn
→ 0 ⇐⇒

yn

xn
→ 0 (n→∞) for all y.

1. Introduction.

As usual we denote by ω the set of all complex sequences y = (yn)n≥1 and by c0, c and `∞ the subsets
of all null, convergent and bounded sequences, respectively. Also let U+ denote the set of all sequences
u = (un)n≥1 with un > 0 for all n. Given a sequence a ∈ ω and a subset E of ω, Wilansky [23] introduced
the notation a−1

∗ E =
{
y ∈ ω : ay =

(
anyn

)
n≥1 ∈ E

}
. In [7] we introduced the notations sa, s0

a and s(c)
a for the

sets
(
(1/an)n≥1

)−1
∗ E for any sequence a ∈ U+ and E ∈ {`∞, c0, c}. In [8] we considered the sum χa + χ′b and

the product χa ∗ χ′b, where χ and χ′ are any of the symbols s, s0, or s(c). Then we gave characterizations
of matrix transformations in the sets sa +

(
s0

b

)
∆q

and sa +
(
s(c)

b

)
∆q

, where ∆ is the operator of the first difference.
In [15] we gave characterizations of the classes of matrix transformations from (sa)∆q to χb, where χ is any
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of the symbols s, s0, or s(c). In [18] we gave applications of the measure of noncompactness to operators on
the spaces sα, s0

α, s(c)
α and `p

α to determine compact operators between some of these spaces. In [3, 12] we
introduced the notion of sequence spaces inclusion equations (SSIE) and sequence spaces equations (SSE), with
operators which are determined by an inclusion or identity each term of which is a sum or a sum of products
of sets of the form (χa)T and

(
χ f (x)

)
T

where χ is any of the symbols s, s0, or s(c), a is a given sequence in U+,
x is the unknown, f maps U+ to itself and T is a triangle. In [13] we dealt with the class of (SSIE) of the
form F ⊂ Ea + F′x where F ∈ {c0, `p,w0,w∞} and E, F′ ∈ {c0, c, `∞, `p,w0,w∞}, (p ≥ 1). In [14] writing Dr for the
diagonal matrix with (Dr)nn = rn, we dealt with the solvability of the (SSIE) using the operator of the first
difference ∆, defined by c ⊂ Dr ∗ E∆ + cx with E = c0, or s1. Then we dealt with the (SSIE) c ⊂ Dr ∗ EC1 + s(c)

x
with E = c0, c or s1, and s1 ⊂ Dr ∗ EC1 + sx where E = c, or s1 and C1 is the Cesàro operator defined by
(C1)n y =

(∑n
k=1 yk

)
/n. In [1] Altay and Başar defined the generalized operator of the first difference defined by

B (r, s)n y = ryn + syn−1 for all n ≥ 2 and B (r, s)1 y1 = ry1. Then these authors dealt with the fine spectrum of
the generalized difference operator B (r, s) over the sequence spaces c0 and c. Then, in [11, 17] we dealt with
the (SSIE) (χx)B(r,s) ⊂ (χx)B(r′,s′) and the (SSE) (χx)B(r,s) = (χx)B(r′,s′), where χ = s, s0, or s(c). Then we stated
some results on the spectrum of B (r, s) considered as an operator from χx to itself, where χ = s, or s0; and on
the solvability of the (SSE) χa +

(
s(c)

x

)
B(r,s)

= s(c)
x where χ = s, s0, or s(c) and x was the unknown. Note that for

χ = s0, the previous (SSE) consists in determining the set of all x ∈ U+ such that yn/xn → l (n→∞) if and
only if there are u, v such that y = u + v and un/an → 0 and (rvn + svn−1) /xn → l′ (n→∞) for all y ∈ ω and
for some scalars l and l′. Then, in 2007 Furkan, Bilgic and Altay [4] dealt with the spectrum of the operator
represented by the triangle

B (r, s, t) =


r
s r 0
t s r

. . .
0 . . .


over c0 and c. Then, Bilgic and Furkan [2] dealt with the fine spectrum of B (r, s, t) over the sequence spaces
l1 and bv. Finally, in 2010 Furkan, Bilgic and Başar [5] studied the fine spectrum of the operator B (r, s, t)
over the sequence spaces lp and bvp.

In this paper, we extend some results stated in the papers [11, 17] and we consider an extension of
the notion of (SSIE) and (SSE) where we use the operator Λ = ˜B (r, s, t) obtained from B (r, s, t) by deleting
the first row of B (r, s, t) which is not a triangle but an infinite tridiagonal matrix and we determine the
sets of all positive sequences x = (xn)n≥1 for which (χx)Λ ⊂ χx and (χx)Λ = χx, where χ is any of the
symbols s, or s0. In this way we are led to determine the set of all positive sequences x for which
limn→∞

(
ryn+1 + syn + tyn−1

)
/xn = 0 if and only if limn→∞ yn/xn = 0 for all y. Notice that, if r = 0 then

Λ = B (0, s, t) is a triangle and we are refered to the papers [11, 17]. So the inclusion (χx)Λ ⊂ χx is associated
with the statement limn→∞

(
syn + tyn−1

)
/xn = 0 implies limn→∞ yn/xn = 0 for all y.

This paper is organized as follows. In Section 2, we recall some results on AK and BK spaces and on
the set Sa,b. In Section 3, we consider the operator C (ξ) and its inverse ∆ (ξ), and recall the definitions
and properties of the sets Γ̂, Ĉ, Γ and Ĉ1. In Section 4, we recall some results on the triangular Toeplitz
matrices of Sr and we consider the isomorphism ϕ from the algebra of the power series into the algebraM of
corresponding matrices. Then using ϕ we explicitely calculate the inverse of the infinite triple band matrix
B (r, s, t). In Section 5, we consider the infinite tridiagonal matrix ˜B (r, s, t) obtained from B (r, s, t) by deleting
its first row, and determine the set of all x such that (χx)B̃(r,s,t) ⊂ χx where χ is any of the symbols s, or s0.
Finally in Section 6 we deal with the (SSE) (χx)B̃(r,s,t) = χx where χ is any of the symbols s, or s0.
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2. Notations and preliminary results

Let A = (ank)n,k≥1 be an infinite matrix and y = (yk)k≥1 be a sequence. Then we write

Any =

∞∑
k=1

ankyk for any integer n ≥ 1 (1)

and Ay =
(
Any

)
n≥1 provided all the series in (1) converge. Let E and F be any subsets of ω. Then we write

(E,F), (see for instance [6]), for the class of all infinite matrices A for which the series in (1) converge for
all y ∈ E and all n, and Ay ∈ F for all y ∈ E. So if A ∈ (E,F) then we are led to the study of the operator
Λ = ΛA : E → F defined by Ay = Λy and we identify the operator Λ to the matrix A. A Banach space
E of complex sequences is said to be a BK space if each projection Pn : E → C defined by Pn(y) = yn for
all y = (yn)n≥1 ∈ E is continuous. A BK space E is said to have AK if every sequence y = (yk)k≥1 ∈ E
has a unique representation y =

∑
∞

k=1 yke(k) where e(k) is the sequence with 1 in the k-th position and 0
otherwise. To simplify the notations, we use the diagonal matrix Da defined by [Da]nn = an for all n, write
Da ∗ E = (1/a)−1

∗ E = {(yn)n≥1 ∈ ω : (yn/an)n≥1 ∈ E} for any a ∈ U+ and any E ⊂ ω, and define sa = Da ∗ `∞,
s0

a = Da ∗ c0 and s(c)
a = Da ∗ c, (see, for instance, [7, 9, 10, 18]). Each of the spaces Dα ∗ χ, where χ ∈ {`∞, c0, c},

is a BK space normed by ‖ξ‖sa = supn≥1(|ξn|/an) and s0
a has AK. Now, let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By

Sa,b we denote the set of all infinite matrices Λ = (λnk)n,k≥1 such that ‖Λ‖Sa,b = supn≥1

(
b−1

n
∑
∞

k=1 |λnk|ak

)
< ∞.

It is well known that Λ ∈ (sa, sb) if and only if Λ ∈ Sa,b. So, we can write (sa, sb) = Sa,b. When sa = sb we
obtain the Banach algebra with identity Sa,b = Sa (see [7]), normed by ‖Λ‖Sa = ‖Λ‖Sa,a . We also have Λ ∈ (sa, sa)
if and only if Λ ∈ Sa. If a = (rn)n≥1, the sets Sa, sa, s0

a and s(c)
a are denoted by Sr, sr, s0

r and s(c)
r , respectively

(see [8]). When r = 1, we obtain s1 = `∞, s0
1 = c0 and s(c)

1 = c, and witing e = (1, 1, ...) we have S1 = Se. It is
well known that (s1, s1) = (c0, s1) = (c, s1) = S1 (see, for instance, [23]). We also have Λ ∈ (c0, c0) if and only
if Λ ∈ S1 and limn→∞ λnk = 0 for k = 1, 2, .... In the sequel we use the next property. We have Λ ∈ (χa, χ′b) if
and only if D1/bΛDa ∈ (χe, χ′e) where χ, χ′ are any of the symbols s0, s(c), or s. For any subset E of ω, we put
ΛE = {η ∈ ω : η = Λy for some y ∈ E}. If F is a subset of ω, we write F(Λ) = FΛ = {y ∈ ω : Λy ∈ F} for the
matrix domain of Λ in F.

3. The operators C(ξ), ∆(ξ) and the sets Γ̂, Ĉ, Γ and Ĉ1

An infinite matrix T = (tnk)n,k≥1 is said to be a triangle if tnk = 0 for k > n and tnn , 0 for all n. Now let U
be the set of all sequences (un)n≥1 ∈ ω with un , 0 for all n. If ξ = (ξn)n≥1 ∈ U, we define by C(ξ) the triangle
defined by [C(ξ)]nk = 1/ξn for k ≤ n, (see, for instance, [9, 10], and [19, 21]). It is easy to see that the triangle
∆(ξ) whose the nonzero entries are defined by [∆(ξ)]nn = ξn and [∆(ξ)]n,n−1 = ξn−1 is the inverse of C(ξ),
that is, C(ξ)(∆(ξ)y) = ∆(ξ)(C(ξ)y) = y for all y ∈ ω. If ξ = e we obtain ∆(e) = ∆, where ∆ is the well–known
operator of the first difference defined by ∆ny = yn − yn−1 for all y ∈ ω and all n ≥ 1, with the convention
y0 = 0. It is usual to write Σ = C(e). We note that ∆ and Σ are inverse to one another, and ∆, Σ ∈ SR for any
R > 1.

To simplify notation, for ξ ∈ U+, we write cn(ξ) = ξ−1
n

∑n
k=1 ξk for all n. We also consider the sets Ĉ

and Ĉ1 of all positive sequences ξ such that (cn(ξ))n ∈ c, supn cn (ξ) < ∞, respectively. Then we write
ξ• =

(
ξ•n

)
n≥1 where ξ•n = ξn−1/ξn with the convention ξ•1 = 1/ξ1, and we define by Γ̂ and Γ the sets of all

positive sequences such that limn→∞ ξ•n < 1 and lim supn→∞ ξ
•
n < 1, respectively. Finally, by G1 we define

the set of all positive sequences such that ξn ≥ Cγn for all n, and for some C > 0 and γ > 1. Note that if ξ
and η ∈ Ĉ1, then we have ξ + η and ξη ∈ Ĉ1. It can easily be seen that (Rn)n ∈ Ĉ1 if and only if R > 1, and
there is no real number α for which the sequence (nα)n≥1 belongs to Ĉ1.

By ([7], Proposition 2.1, p. 1786) and ([16], Proposition 2.2 p. 88) we obtain the following lemma.

Lemma 3.1. We have Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1 ⊂ G1.
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Concerning the identity (χa)∆ = χa for χ = s or s0 it was shown in [8], Proposition 9, pp. 300-301] the
following results.

Lemma 3.2. Let a ∈ U+ and let χ be any of the symbols s or s0. Then the following statements are equivalent (i)
a ∈ Ĉ1. (ii) (χa)∆ = χa. (iii) (χa)∆ ⊂ χa. (iv) The operator ∆ ∈ (χa, χa) is surjective.

Lemma 3.3. ([8], Proposition 9, p. 300) For each a ∈ ω we have a ∈ Γ̂ if and only if
(
s(c)

a

)
∆

= s(c)
a .

In the following we consider the sets Ĉ2 and C̃2 of all positive sequences x that satisfy (1/xn)
∑n

k=1 (n − k + 1) xk =
O (1) and (1/xn)

∑n
k=1 (n − k + 1) xk−1 = O (1) (n→∞), with the convention x0 = 1, respectively. We obtain

the following result.

Lemma 3.4. We have Ĉ2 = C̃2 = Ĉ1.

Proof. First we show Ĉ1 = Ĉ2. Let x ∈ Ĉ1. By Lemma 3.2 with χ = s we have x ∈ Ĉ1 implies (sx)∆ = sx and
trivially we obtain (sx)∆2 = ((sx)∆)∆ = (sx)∆ = sx. Then we have ∆−2 = Σ2

∈ (sx, sx) and since D1/xΣ
2Dx is the

triangle defined by
[
D1/xΣ

2Dx

]
nk

= (n − k + 1) xk/xn, for k ≤ n, we deduce x ∈ Ĉ2. So we have shown Ĉ1 ⊂ Ĉ2.

Now since n − k + 1 ≥ 1 for k = 1, 2,..., n and for all n we easily see that x−1
n

n∑
k=1

(n − k + 1) xk ≥ x−1
n

n∑
k=1

xk for

all n, and trivially we obtain Ĉ2 ⊂ Ĉ1 and since Ĉ1 ⊂ Ĉ2 we conclude Ĉ1 = Ĉ2. Now, we show Ĉ2 = C̃2. For
this, notice that for every n we have

n−1∑
k=1

(n − k + 1) xk =

n−1∑
k=1

(n − k) xk +

n−1∑
k=1

xk =

n∑
k=2

(n − k + 1) xk−1 +

n−1∑
k=1

xk. (2)

Now, let x ∈ C̃2. Then we have x ∈ Ĉ1 since

1
xn

n∑
k=1

xk − 1 =
1
xn

n∑
k=2

xk−1 ≤
1
xn

n∑
k=2

(n − k + 1) xk−1 ≤ K

for all n for some K > 0. Then we have C̃2 ⊂ Ĉ1 = Ĉ2. Now we show Ĉ2 ⊂ C̃2. For this, we let x ∈ Ĉ2. Then,
by (2) we have

σn =
1
xn

n∑
k=2

(n − k + 1) xk−1 =
1
xn

n−1∑
k=1

(n − k + 1) xk −
1
xn

n−1∑
k=1

xk

and σ ∈ `∞. We conclude x ∈ C̃2 and Ĉ2 ⊂ C̃2 and we have shown Ĉ2 = C̃2.

4. Calculation of the inverse of the triple band matrix B (r, s, t) using the isomorphismϕ

4.1. Triangular Toeplitz matrices of Sr and power series.
A Toeplitz matrix is an infinite matrix whose the entries are of the form (M)nk = ak−n with n, k ≥ 1. Here

we focus on triangular Toeplitz matrices and considerM as an operator mapping sr into itself, with r > 0. Let

f (u) =

∞∑
k=0

akuk (3)

be a power series defined in the open disk |u| < R. We can associate with f the upper infinite triangular

Toeplitz matrixM = ϕ
(

f
)
∈ ∩0<r<RSr defined by ϕ

(
f
)

=


a0 a1 a2 .
a0 a1 .

0 a0 .
.

. For practical reasons, we write
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ϕ
[

f (u)
]

instead of ϕ
(

f
)
. So we can associate with 1 the matrix I and we can associate with uk for k integer,

the matrix whose the only nonzero entries are equal to 1 and are on the diagonal of equation m = n + k.
From [22] we obtain the next result.

Lemma 4.1. The map ϕ : f 7→ M is an isomorphism from the algebra of the power series defined in |u| < R into the
algebraM of the corresponding matrices.

4.2. Application to the calculation of the inverse of the infinite tridiagonal matrix B (r, s, t).
In this section we explicitly calculate the inverse of the infinite triangular Toeplitz matrix B (r, s, t)

using the function ϕ. The triangle B (r, s, t) is represented by the operator defined by
(
B (r, s, t) y

)
1 = ry1,(

B (r, s, t) y
)

2 = ry2 + sy1 and
(
B (r, s, t) y

)
n = ryn + syn−1 + tyn−2 for all n ≥ 3, where r, s, t are complex numbers.

Throughout this paper we assume, except in special cases, that r, s and t are nonzero real numbers. Since
[B (r, s, t)]T = ϕ

(
r + su + tu2

)
, we associate with the matrix B (r, s, t) the equation

b (u) = r + su + tu2 = 0. (4)

We denote by u1 and u2 the roots of (4). Since r, t , 0 all the roots of (4) are distinct from zero. We can state
the next result where we let ∆= s2

− 4tr.

Lemma 4.2. If ∆, 0, then u1 =
(
−s −

√
∆
)
/2t and u2 =

(
−s +

√
∆
)
/2t are the real or complex roots of (4). Then

the inverse of B (r, s, t) is a triangle whose the nonzero entries are defined for k ≤ n, in the following way.
(i) If ∆, 0, then we have

(
[B (r, s, t)]−1

)
nk

=


−

uk−n−1
2 − uk−n−1

1
√

∆
if ∆ > 0,

i
(
uk−n−1

2 − uk−n−1
1

)
√
−∆

if ∆ < 0.

(ii) If ∆= 0, then u1 = −s/2t is the double root of (4) and the non-zero entries of the inverse of B (r, s, t) are defined
by (

[B (r, s, t)]−1
)

nk
=

1
r

(n − k + 1) uk−n
1 .

Proof. (i) We have ∆= s2
− 4tr , 0 and B (r, s, t)T = ϕ

(
tu2 + su + r

)
= ϕ [t (u − u1) (u − u2)], where u1 =

−α1 − s/2t, u2 = α1 − s/2 are the roots of b (u) = 0. Then we have α1 =
√

∆/2t if ∆ > 0, and α1 = i
√
−∆/2t if

∆ < 0. By Lemma 4.1 we have
[
B (r, s, t)T

]−1
= ϕ

((
tu2 + su + r

)−1
)

= ϕ
[
(t (u − u1) (u − u2))−1

]
, but

R (u) =
1

t (u − u1) (u − u2)
=

1

t
r
t

∞∑
k=0

 k∑
j=0

u− j
1 u j−k

2

 uk for |u| < min (|u1| , |u2|) .

Since trivially we have [B (r, s, t)]−1 =
([

B (r, s, t)T
]−1

)T
, we obtain

(
[B (r, s, t)]−1

)
nk

=
1
r

u−(n−k)
2

n−k∑
j=0

(u2

u1

) j

=
1
r

uk−n
2

[
1 −

(u2

u1

)n−k+1
]

1

1 −
u2

u1

=
1
r

u1u2

u1 − u2

(
uk−n−1

2 − uk−n−1
1

)
,
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and (
[B (r, s, t)]−1

)
nk

= −
1

2tα1

(
uk−n−1

2 − uk−n−1
1

)
for k ≤ n. (5)

Since we have −2tα1 = −
√

∆ if ∆ > 0 and −2tα1 = −i
√
−∆ if ∆ < 0 we conclude (i) holds.

(ii) Here ∆= 0 and u1 = u2 = −s/2t. We have
[
B (r, s, t)T

]−1
= ϕ

[(
tu2 + su + r

)−1
]

= ϕ
(
1/t (u − u1)2

)
, and

R (u) =
1

t (u − u1)2 =
4t
s2

∞∑
k=0

k + 1
uk

1

uk for |u| < |u1| .

Since ∆= 0 we have 4t/s2 = 1/r, and
(
[B (r, s, t)]−1

)
nk

= r−1 (n − k + 1) uk−n
1 for k ≤ n. This completes the

proof.

In all that follows, when ∆< 0, we write u1 = ρeiθ and u2 = u1 = ρe−iθ with ρ > 0 and θ < πZ for the
roots of the equation in (4). We then obtain another expression of the inverse of B (r, s, t), which is given in
the next result.

Corollary 4.3. Assume ∆< 0, and let u1 = ρeiθ be a root of (4). Then the inverse of B (r, s, t) is a triangle whose the
non-zero entries are given by

(
[B (r, s, t)]−1

)
nk

=
1
r

sin (n − k + 1)θ
ρn−k sinθ

.

Proof. For ∆< 0 we have u1 = ρeiθ with ρ > 0 and θ , mπ for all integer m. By (5) we successively obtain
u2 = u1, u1u2 = ρ2, u1 − u2 = −2α1 = 2iρ sinθ, uk−n−1

2 − uk−n−1
1 = −2iρk−n−1 sin [(k − n − 1)θ] and

(
[B (r, s, t)]−1

)
nk

= −
1
r

ρ2

2iρ sinθ
2iρk−n−1 sin [(k − n − 1)θ]

=
1
r
ρk−n sin [(n − k + 1)θ]

sinθ
for k ≤ n. �

Remark 4.4. In the case when ∆, 0, by elementary calculations the inverse of B (r, s, t) is the triangle whose the
nonzero entries are given by,

(
[B (r, s, t)]−1

)
nk

=


−

(2t)n−k+1

√
∆

( −1

s +
√

∆

)n−k+1

−

(
1

−s +
√

∆

)n−k+1 if ∆ > 0,

i (2t)n−k+1

√
−∆

( −1

s + i
√
−∆

)n−k+1

−

(
1

−s + i
√
−∆

)n−k+1 if ∆ < 0.

5. Application to the (SSIE) (χx)B̃(r,s,t) ⊂ χx where χ = s, or s0

In this section, we consider the tridiagonal matrix ˜B (r, s, t) obtained from B (r, s, t) by deleting the first
row and we determine the sets of all x ∈ U+ such that (sx)B̃(r,s,t) ⊂ sx and

(
s0

x

)
B̃(r,s,t)

⊂ s0
x, respectively. The

previous problems consists in determining the set of all x ∈ U+ for which
(
ryn+1 + syn + tyn−1

)
/xn = κ (1)

implies yn/xn = κ (1) (n→∞) for all y where κ is either of the symbols o, or O.
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5.1. General case.
Here we consider the infinite tridiagonal matrix ˜B (r, s, t) obtained from B (r, s, t) by deleting the first

row, that is, ˜B (r, s, t) =


s r 0
t s r

t s r
. . .

0 . .

. The operator associated with the matrix ˜B (r, s, t) is defined

by
[
˜B (r, s, t)y

]
1

= sy1 + ry2, and
[
˜B (r, s, t)y

]
n

= tyn−1 + syn + ryn+1 for all n ≥ 2. Consider the sets Ŝ ={
x ∈ U+ : (sx)B̃(r,s,t) ⊂ sx

}
and Ŝ0 =

{
x ∈ U+ :

(
s0

x

)
B̃(r,s,t)

⊂ s0
x

}
. We then have x ∈ Ŝ if and only if the condition∣∣∣ryn+1 + syn + tyn−1

∣∣∣ /xn ≤ K1 implies
∣∣∣yn

∣∣∣ /xn ≤ K2 for all y, for all n and for some K1 and K2 > 0. Similarly

we have x ∈ Ŝ0 if and only if the condition
(
ryn+1 + syn + tyn−1

)
/xn → 0 implies yn/xn → 0 (n→∞) for all

y. Now, we state the next result, where we associate with the sequence x ∈ U+ the sequence x− defined by
[x−]n = xn−1 for all n ≥ 1 with the convention [x−]1 = 1. So we write x0 = 1 in all that follows.

Lemma 5.1. (i) We have x ∈ Ŝ if and only if (sx− )B(r,s,t) ⊂ sx. (ii) We have x ∈ Ŝ0 if and only if
(
s0

x−

)
B(r,s,t)

⊂ s0
x.

Proof. We have
(
˜B (r, s, t)y

)
n−1

=
(
B (r, s, t) y

)
n for all n ≥ 2 and for all y. Then we have x−1

n

(
˜B (r, s, t)y

)
n

= O (1)

if and only if x−1
n−1

(
B (r, s, t) y

)
n = O (1) (n→∞), and x ∈ Ŝ if and only if x−1

n−1

(
B (r, s, t) y

)
n = O (1) implies

yn/xn = O (1) (n→∞) for all y ∈ ω, and we conclude for (i). (ii) can be shown in a similar way.

From Lemma 4.2 we obtain the following results where we use the convention x0 = 1.

Proposition 5.2. (i) Assume ∆, 0 and let u1 and u2 denote the roots of (4).
a) x ∈ Ŝ if and only if

sup
n

 1
xn

n∑
k=1

∣∣∣uk−n−1
2 − uk−n−1

1

∣∣∣ xk−1

 < ∞. (6)

b) x ∈ Ŝ0 if and only if (6) holds and

lim
n→∞

1
xn

(
uk−n−1

2 − uk−n−1
1

)
xk−1 = 0 (n→∞) for k = 1, 2, .... (7)

(ii) Assume ∆= 0, and let u1 be the double root of (4). Then Ŝ = Ŝ0 and x ∈ Ŝ if and only if (|u1|
n xn)n≥1 ∈ Ĉ1,

that is,

1
|u1|

n xn

n∑
k=1

|u1|
k xk = O (1) (n→∞) .

Proof. (i) a) From Lemma 5.1 we have x ∈ Ŝ if and only if (sx− )B(r,s,t) ⊂ sx. This means [B (r, s, t)]−1
∈ (sx− , sx),

and D1/x [B (r, s, t)]−1 Dx− ∈ S1. By Part (i) of Lemma 4.2 we obtain (6). b) we have x ∈ Ŝ0 if and only if(
s0

x−

)
B(r,s,t)

⊂ s0
x and

D1/x [B (r, s, t)]−1 Dx− ∈ (c0, c0) . (8)



B. de Malafosse et al. / Filomat 35:12 (2021), 3957–3970 3964

From the characterization of (c0, c0) and Part (i) of Lemma 4.2, we conclude (8) holds if and only if (6) and
(7) hold.

(ii) First, by Lemma 4.2 (ii), we easily see that x ∈ Ŝ if and only if

sup
n

 1
|u1|

n xn

n∑
k=1

(n − k + 1) |u1|
k xk−1

 < ∞. (9)

This means (|u1|
n xn)n≥1 ∈ C̃2 and since by Lemma 3.4, we have C̃2 = Ĉ1, then (|u1|

n xn)n≥1 ∈ Ĉ1. This shows
x ∈ Ŝ if and only if (|u1|

n xn)n≥1 ∈ Ĉ1. It remains to show Ŝ = Ŝ0. Trivially we have x ∈ Ŝ0 if and only if (8)

holds, which is equivalent to (9) and

lim
n→∞

1
run

1xn
(n − k + 1) uk

1xk−1 = 0 for k = 1, 2, .... (10)

and since (9) is equivalent to (|u1|
n xn)n≥1 ∈ Ĉ1 we have shown Ŝ0 ⊂ Ŝ. Now we show Ŝ ⊂ Ŝ0. Take x ∈ Ŝ.

As we have just seen we have (|u1|
n xn)n≥1 ∈ Ĉ1. Now, since by Lemma 3.1 we have Ĉ1 ⊂ G1, there are γ > 1

and K > 0 such that |u1|
n xn ≥ Kγn for all n, and since

n − k + 1∣∣∣un
1

∣∣∣ xn
≤

n
Kγn for k = 1, 2, ...,n, and for all n,

we deduce (10) holds and x ∈ Ŝ0. We conclude Ŝ ⊂ Ŝ0. So we have shown Ŝ0 = Ŝ.

We immediately deduce the following,

Corollary 5.3. If (6) holds and xnun
j →∞ (n→∞) for j = 1, 2, then x ∈ Ŝ0.

Proof. This result is a direct consequence of the fact that the condition xnun
j → ∞ (n→∞) for j = 1, 2,

implies (7).

Remark 5.4. From the characterization of (c0, c) and the proof of (ii) in Proposition 5.2 it can easily be seen that the
set Ŝ0,c = Ŝ0 where

Ŝ0,c =
{
x ∈ U+ :

(
s0

x

)
B̃(r,s,t)

⊂ s(c)
x

}
.

5.2. Relations between the sets Ŝ, Ŝ0 and Ĉα for α , 0.

In this subsection we establish a relation between the sets Ŝ, or Ŝ0 and the set Ĉα = D(|α|n)n≥1
∗ Ĉ1.

5.2.1. Case ∆ ≥0.
For any nonzero real number α, we write

Ĉα = D(|α|n)n≥1
∗ Ĉ1 =

{
x ∈ U+ : (xn/ |α|

n)n≥1 ∈ Ĉ1

}
,

that is,

Ĉα =

x ∈ U+ : sup
n

 |α|nxn

n∑
k=1

xk

|α|k

 < ∞
 .

Note that Ĉα = Ĉ|α|. It is trivial that if x and x′ ∈ Ĉα then we have x + x′ ∈ Ĉα. We may state the following
result where we confine our study to the case when ∆ ≥0.
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Theorem 5.5. Let u1 , u2 be the roots of (4) for ∆> 0 and let u1 = u2 = −s/2t be the double root of (4) for ∆ =0. We
have:

(i)

Ŝ = Ŝ0 =

{
Ĉmax(|1/u1 |,|1/u2 |) if ∆ > 0,
Ĉ1/u1 if ∆ = 0.

(11)

(ii)

lim
n→∞

x•n < min (|u1| , |u2|) implies x ∈ Ŝ, for ∆ > 0, (12)

and

lim
n→∞

x•n < |u1| implies x ∈ Ŝ, for ∆ = 0.

Proof. (i) First we show Ŝ = Ĉmax(|1/u1 |,|1/u2 |) for ∆> 0. By Proposition 5.2 we have x ∈ Ŝ if and only if (6)
holds. As we have seen, since r , 0, we have u1 and u2 , 0, and since s and t are different from zero, then
we have −s/t = u1 + u2 , 0, so |ui| > 0 for i = 1, 2, and |u1| , |u2|. Now we consider the case 0 < |u1| < |u2|.
For any given n and for k = 1, 2, ...,n, we successively obtain 0 < |u1/u2| < 1, |u1/u2|

n−k+1
≤ |u1/u2|,

1 − |u1/u2| ≤
∣∣∣1 − (u1/u2)n−k+1

∣∣∣ ≤ 2, and

∣∣∣uk−n−1
1

∣∣∣ (1 − ∣∣∣∣∣u1

u2

∣∣∣∣∣) ≤ ∣∣∣uk−n−1
2 − uk−n−1

1

∣∣∣ =
∣∣∣uk−n−1

1

∣∣∣ ∣∣∣∣∣∣1 − (u1

u2

)n−k+1
∣∣∣∣∣∣ ≤ 2

∣∣∣uk−n−1
1

∣∣∣ .
Then we have(

1 −
∣∣∣∣∣u1

u2

∣∣∣∣∣) 1

xn |u1|
n+1

n∑
k=1

|u1|
k xk−1 ≤

1
xn

n∑
k=1

∣∣∣uk−n−1
2 − uk−n−1

1

∣∣∣ xk−1

≤ 2
1
|u1|

1
xn |u1|

n

n∑
k=1

|u1|
k xk−1 for all n.

So, the statement in (6) holds if and only if |u1|
−n x−1

n
∑n

k=1 |u1|
k xk−1 = O (1) (n→∞), that is, x ∈ Ĉ1/u1 . We

conclude Ŝ = Ĉ1/u1 . By similar arguments as those used above we can show that 0 < |u2| < |u1| implies
Ŝ = Ĉ1/u2 . So we have shown Ŝ = Ĉmax(|1/u1 |,|1/u2 |).

Now show Ŝ0 = Ĉmax(|1/u1 |,|1/u2 |). From Proposition 5.2 we have x ∈ Ŝ0 if and only if x ∈ Ŝ and (7) holds.
But as we have just seen we have Ŝ = Ĉmax(|1/u1 |,|1/u2 |), so x ∈ Ĉmax(|1/u1 |,|1/u2 |) implies

(
xn

∣∣∣u j

∣∣∣n)
n≥1
∈ Ĉ1 for j = 1,

2. Now since by Lemma 3.1, we have Ĉ1 ⊂ G1, there are C > 0 and γ > 1 such that xn

∣∣∣u j

∣∣∣n > Cγn for all n
and for j = 1, 2. Then we have

lim
n→∞

1
xn

1
un−k+1

j

xk−1 = lim
n→∞

1
xn

1
un

j
xk−1uk−1

j = 0 for all k and for j = 1, 2.

So we have shown (7) holds and Ŝ0 = Ŝ = Ĉmax(|1/u1 |,|1/u2 |).
The case ∆ = 0 follows from Proposition 5.2. This concludes the proof of (i).
(ii) Case ∆> 0. Since Γ ⊂ Ĉ1, the condition limn→∞x•n < min (|u1| , |u2|) successively implies limn→∞x•n < |ui|,(

xnun
j

)
n≥1
∈ Γ for j = 1, 2,..., and x ∈ Ŝ. This completes the proof. The case ∆ =0 can be shown similarly.

When r = 0 the previous results was extended in [11] in the following way.
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Remark 5.6. Let r = 0 and s , 0. Then ˜B (0, s, t) is a triangle and by ([11], Proposition 5.8, p. 47) we have

(χx) ˜B(0,s,t) ⊂ χx ⇐⇒ x ∈ Ĉ1/w,

where χ is any of the symbols s0, or s and w is the root of the equation s + tu = 0.

When χ = s(c) we obtain the next result.

Remark 5.7. We may deal with the inclusion
(
s(c)

x

)
B̃(r,s,t)

⊂ s(c)
x where ∆ =s2

− 4rt > 0. We have
(
s(c)

x

)
B̃(r,s,t)

⊂ s(c)
x if

and only if
(
s(c)

x−

)
B(r,s,t)

⊂ s(c)
x and

D1/x [B (r, s, t)]−1 Dx− ∈ (c, c) . (13)

Then from the characterization of (c, c) it can easily be seen that the condition in (13) is equivalent to

lim
n→∞

 1
xn

n∑
k=1

(
uk−n−1

2 − uk−n−1
1

)
xk−1

 = l, (14)

and

lim
n→∞

1
xn

(
uk−n−1

2 − uk−n−1
1

)
xk−1 = lk (15)

for some scalars l and lk with k = 2, .... By similar arguments as those used in the proof of Theorem 5.5 (ii) we conclude
that by Lemma 3.1 the condition limn→∞ x•n < min (|u1| , |u2|) implies x ∈ D|ui | ∗ Ĉ with i = 1, 2, and the conditions in
(14) and (15) hold and

(
s(c)

x

)
B̃(r,s,t)

⊂ s(c)
x . So, we have shown that if the condition limn→∞ x•n < min (|u1| , |u2|) holds,

then we have
(
s(c)

x

)
B̃(r,s,t)

⊂ s(c)
x which means that the condition

(
ryn+1 + syn + tyn−1

)
/xn → L1 implies yn/xn → L2

(n→∞) for all y and for some scalars L1 and L2.

When r, s, t ∈ Cwe obtain the next remark.

Remark 5.8. Assume ∆ ,0 and let r, s and t be nonzero complex numbers. Then, the roots u1 and u2 of (4), can be
written in the form u j = ρ jeiθ j for j = 1, 2. In the case when |u1| , |u2|, (that is, ρ1 , ρ2), by similar arguments

as those used in Theorem 5.5 we have Ŝ = Ŝ0 = Ĉmax(1/ρ1,1/ρ2), and the condition limn→∞x•n < min
(
ρ1, ρ2

)
implies

x ∈ Ŝ. We obtain a similar result in the case ∆ =0, that is, Ŝ = Ŝ0 = Ĉ1/ρ1 where 1/ρ1 = |2t/s|.

From Theorem 5.5 we also obtain the next result.

Corollary 5.9. Assume r/t > 1. If s = − (r + t), then we have Ŝ = Ŝ0 = Ĉ1, moreover if limn→∞x•n < 1 then x ∈ Ŝ.

Proof. From the hypotheses, the solutions of the equation tu2
− (r + t) u + r = 0 are u1 = 1 and u2 = r/t > 1

and since max (|1/u1| , |1/u2|) = 1, we have Ĉmax(|1/u1 |,|1/u2 |) = Ĉ1.

Since trivially we have x = (nαRn)n≥1 ∈ Γ ⊂ Ĉ1 for any given real number α and R > 1, we immediately
deduce the following.

Example 5.10. For any given reals R and α with R > 1, we have
∣∣∣2yn+1 − 3yn + yn−1

∣∣∣ ≤ K1nαRn implies
∣∣∣yn

∣∣∣ ≤
K2nαRn for all y, for all n and for some K1 and K2 > 0.

By Theorem 5.5 we obtain the next corollary.
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Corollary 5.11. Assume ∆> 0. Then Ŝ = Ŝ0 and we have

|u1| =
∣∣∣∣(−s −

√

∆
)
/2t

∣∣∣∣ > 1 and |u2| =
∣∣∣∣(−s +

√

∆
)
/2t

∣∣∣∣ > 1 (16)

if and only if the next statement holds

ryn+1 + syn + tyn−1 → 0 if and only if yn → 0 (n→∞) for all y. (17)

Proof. The identity Ŝ = Ŝ0 follows from Theorem 5.5. The sufficiency in statement (17) is trivially true. So
it is enough to show that (16) holds if and only if e ∈ Ĉν, where ν = max (|1/u1| , |1/u2|). We have e ∈ Ĉν
if and only if (ν−n)n≥1 ∈ Ĉ1 and as we have seen (ν−n)n≥1 ∈ Ĉ1 if and only if ν < 1. We conclude from the
equivalence of ν < 1 and the condition in (16). This completes the proof.

Example 5.12. Since u1 = 2 and u2 = −3 are the roots of the equation u2 +u−6 = 0, we have 6yn+1− yn− yn−1 → 0
if and only if yn → 0 (n→∞) for all y.

5.2.2. Case ∆< 0.
Here we assume ∆< 0, then u1 = ρeiθ and u2 = u1 are the roots of equation (4). Consider the next

conditions,

sup
n

 1
ρnxn

n∑
k=1

|sin (n − k + 1)θ|ρkxk−1

 < ∞ (18)

and

lim
n→∞

x•n < ρ. (19)

Proposition 5.13. Assume ∆< 0 and let u1 = ρeiθ be a root of equation (4). We have:
(i) a) x ∈ Ŝ if and only if condition (18) holds.

b) x ∈ Ŝ0 if and only if conditions (18) and (7) hold.
(ii)

Ĉ1/ρ ⊂ Ŝ
0 ⊂ Ŝ. (20)

(iii) The condition in (19) implies x ∈ Ŝ0.

Proof. (i) follows from Lemma 4.3 and from the characterization of (c0, c0). (ii) The inclusion Ŝ0 ⊂ Ŝ is an
immediate consequence of Proposition 5.2. Now, we let x ∈ Ĉ1/ρ. Then (18) holds since |sin (n − k + 1)θ| ≤ 1
for all n, k. Then we successively obtain

(
xnρn)

n≥1 ∈ Ĉ1, xnρn
→ ∞ (n→∞) and

(
xnρn)−1

→ 0 (n→∞), for

j = 1, 2, and (7) holds. We conclude x ∈ Ĉ1/ρ implies (7), that is, x ∈ Ŝ0. (iii) By Lemma 3.1 we have Γ ⊂ Ĉ1

and D(1/ρn)n≥1
∗ Γ ⊂ Ĉ1/ρ. So, the result follows from (ii) and from the equivalence of x ∈ D(1/ρn)n≥1

∗ Γ and
(19). This completes the proof.

As an immediate consequence of Proposition 5.13 we obtain the next corollary.

Corollary 5.14. Assume ∆< 0 and let u1 = ρeiθ with ρ > 0 and θ , mπ for m ∈ Z, be a root of equation (4).
(i) Let

(
xnρn)

n≥1 ∈ Ĉ1. Then we have
(
ρ2yn+1 − 2ρ cosθyn + yn−1

)
/xn → 0 implies yn/xn → 0 (n→∞) for all

y.
(ii) For any ρ > 1, we have ρ2yn+1 − 2ρ cosθyn + yn−1 → 0 implies yn → 0 (n→∞) for all y.
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Proof. (i) is a direct consequence of Proposition 5.13. (ii) The conditions x = e and ρ > 1 together imply
x ∈ Ĉ1/ρ and e ∈ Ŝ0.

Now we state the next elementary example.

Example 5.15. If lim
n→∞

x•n < 1, then we have
(
yn+1 + yn + yn−1

)
/xn → 0 implies yn/xn → 0 (n→∞) for all y. This

result follows from the fact that (19) implies x ∈ Ĉ1/ρ and from Corollary 5.14, where u1 = e2iπ/3 is a root of the
equation u2 +u+1 = 0. It can easily be seen that for any given R > 1 and α real, we have yn+1 + yn + yn−1 = o (Rn/nα)
implies yn = o (Rn/nα) (n→∞) for all y.

6. Application to the (SSE) (χx)B̃(r,s,t) = χx for χ ∈
{
s, s0}

Now, we consider the (SSE) (χx)B̃(r,s,t) = χx, where χ = s, or s0. For χ = s0 this means that the condition
limn→∞ yn/xn = 0 holds if and only if

lim
n→∞

(
ryn+1 + syn + tyn−1

)
/xn = 0 (n→∞)

for all y. We define by s− the set of all x ∈ U+ that satisfy the condition xn ≤ Cxn−1 for some C > 0 and for
all n, that is,

1/x• ∈ `∞, (21)

and we let Ŝ =
{
x ∈ U+ : (sx)B̃(r,s,t) = sx

}
and Ŝ0 =

{
x ∈ U+ :

(
s0

x

)
B̃(r,s,t)

= s0
x

}
. We immediately obtain the

following theorem.

Theorem 6.1. (i) Assume ∆, 0. Then we have:
a) x ∈ Ŝ if and only if conditions (6) and (21) hold.
b) x ∈ Ŝ0 if and only if conditions (6), (21) and (7) hold.
(ii) Assume ∆= 0, and let u1 be the double root of (4). Then we have Ŝ = Ŝ0 = Ĉ|1/u1 | ∩ s−.

Proof. (i) a) We have x ∈ Ŝ if and only if sx ⊂ (sx)B̃(r,s,t) and (sx)B̃(r,s,t) ⊂ sx. We have sx ⊂ (sx)B̃(r,s,t) if and only if
sx ⊂ (sx− )B(r,s,t) and B (r, s, t) ∈ (sx, sx− ). Then, the last condition is equivalent to

(|r| xn + |s| xn−1 + |t| xn−2) /xn−1 = O (1) (n→∞) ,

and to K1 ≤ x•n ≤ K2 for all n and for some K1 and K2 > 0. Then, by Proposition 5.2 we have (sx)B̃(r,s,t) ⊂ sx if

and only if (6) holds and the condition in (6) implies
∣∣∣u−1

2 − u−1
1

∣∣∣ x•n = O (1) (n→∞) and x•n = O (1) (n→∞).
We conclude that the equation (sx)B̃(r,s,t) = sx is equivalent to the conditions in (6) and (21). So we have
shown (i) a). The statement in (i) b) can be shown in a similar way. Statement (ii) is a consequence of
Theorem 5.5 and of the equivalence of the inclusion sx ⊂ (sx)B̃(r,s,t) and condition (21).

More precisely from Theorem 5.5, Proposition 5.13 and Theorem 6.1, we obtain the following results.

Corollary 6.2. (i) Let u1 and u2 be the roots of (4) whenever ∆ >0, and let u1 = u2 = −s/2t be the double root of (4)
for ∆ = 0. Then we have

Ŝ = Ŝ0 =

{
Ĉmax(|1/u1 |,|1/u2 |) ∩ s− if ∆ > 0,
Ĉ1/u1 ∩ s− if ∆ = 0.

(ii) Assume ∆< 0 and denote by u = ρeiθ a root of equation (4). Then we have

Ĉ1/ρ ∩ s− ⊂ Ŝ ⊂ Ŝ.



B. de Malafosse et al. / Filomat 35:12 (2021), 3957–3970 3969

Using Corollary 5.9 we obtain the following corollary.

Corollary 6.3. Assume s = − (r + t) and r/t > 1. Then we have:
(i) Ŝ0 = Ĉ1 ∩ s−.
(ii) For any x ∈ U+ the condition

0 < lim
n→∞

x•n < 1 (22)

implies x ∈ Ŝ0.

Proof. (i) is a direct consequence of Corollary 5.9 and Part (i) of Corollary 6.2. Statement (ii). Let x ∈ U+

such that condition (22) holds. Then limn→∞ x•n < 1 implies x ∈ Ĉ1 since Γ̂ ⊂ Ĉ1. On the other hand since
x•n > 0 for all n, the condition limn→∞ x•n > 0 implies there is K > 0 such that x•n ≥ K for all n. We conclude
x ∈ Ĉ1 ∩ s− = Ŝ0. This concludes the proof of (ii).

Now we state another application that can be considered as a corollary.

Corollary 6.4. For any given real number θ , kπ, k ∈ Z, and for any x ∈ U+, the condition in (22) implies the
equivalence(

yn+1 − 2 cosθyn + yn−1
)
/xn → 0 if and only if yn/xn → 0 (n→∞) for all y. (23)

Proof. Here, we have ∆ < 0 and u1 = ρeiθ with ρ = 1 is a root of equation (4) with r = t = 1 and s = −2 cosθ.
Now, assume x satisfies the condition in (22). As we have just seen, limn→∞ x•n < 1 implies x ∈ Ĉ1 and
limn→∞ x•n > 0 implies x ∈ s−. We conclude x ∈ Ĉ1 ∩ s− and by Part (ii) of Corollary 6.2 the statement in (23)
holds. This concludes the proof.

Example 6.5. From Corollary 6.4 withθ = 2π/3, we easily see that under (22) the condition
(
yn+1 + yn + yn−1

)
/xn →

0 holds if and only if yn/xn → 0 (n→∞) for all y.
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