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Abstract

In this paper, we are interested in solving infinite linear systems of differential equations of the form x′ (t) =
Tx (t) + b with x(0) = x0, where T is either the generalized Cesàro operator C (λ) or the weighted mean
matrix Nq, x0 and b are two given infinite column matrices and λ is a sequence with non-zero entries. We
use a new method based on Laplace transformations to solve these systems.
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1. Introduction

In our previous paper [4], we dealt with solving infinite linear differential systems of the form x′ (t) =
∆(λ)x (t) + b with x(0) = x0, where ∆ (λ) is the triangle defined by:

∆ (λ)nk =


λn for k = n,
−λn−1 for k = n− 1,

0 for k 6= n− 1 and k 6= n (n ≥ 1),

with λ0 = 0, x0 and b are two given infinite column matrices, λ = (λn)n≥1 is a sequence with non-zero terms
and x (t) = (xn (t))n≥1 is the unknown sequence of functions. We have considered two cases for study, in
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the first one, we suppose that λ is a constant sequence and in the second case, all terms of λ are supposed
to be pairwisely distinct. Solutions of such systems are explicitly given using Laplace transformation.

In this paper, we deal with infinite linear systems of differential equations of the form:

x′ (t) = C(λ)x (t) + b, (1.1)

and
x′ (t) = Nq x (t) + b, (1.2)

where C(λ) = ∆(λ)−1 is the generalized Cesàro operator and Nq is the weighted mean matrix. Recall that
for the operator of weighted mean, q = (qn)n is a sequence of positive entries, and Q = (

∑n
m=1 qm)n. Then

Nq = D1/QΣDq where Σ = C(e) = ∆(e)−1 for e = (1, . . . , 1, . . . ) and Dq (resp. D1/Q) is the infinite diagonal
matrix where the entries on the main diagonal are the terms of the sequence q (resp. 1/Q).

The Cesàro operator was studied by Hausdorff, Leibowitz, Reade [10], Okutoyi [8] and de Malafosse [3].
In these papers the authors gave results on the spectrum of this matrix. Note that in [5] can be found
other results on Cesàro operator. Infinite matrix theory is used in many branches of classical mathematics
such as infinite quadratic forms, integral equations, matrix transformations, differential equations, operators
between sequence spaces, it is also used to provide approximations of solutions. Infinite-dimensional linear
systems appear naturally when studying control problems for systems modelled by linear partial differential
equations. Many problems in dynamic systems can be written in the form of differential equations or infinite
differential systems and lead to infinite linear systems. In this way, we cite Hill’s equation that was studied
by L. Brillouin, E. L. Ince [6], K.G. Valeev [12], H. Hochstadt (1963), S. Winkler (1966) and B. Rossetto [11].
This equation is the second order differential equation of the form

y′′ (z) + J (z) y (z) = 0, (1.3)

where z ∈ Ω and Ω is an open subset of C, containing the real axis and J (z) =
∑+∞

n=−∞ θne
2inz is a special

periodic function, where θn = θ−n for all n ∈ Z. It was shown that the solutions of (1.3) are of the form
y (z) = eµz

∑+∞
m=−∞ xme

2imz where µ ∈ C is the Floquet exponent. Replacing y (z) by its expression in
equation (1.3), we obtain an infinite linear system represented by the matrix equation

Aµx = 0, (1.4)

where xt = (. . . , x−1, x0, x1, . . . ) and Aµ = (anm)n,m∈Z is an infinite matrix depending on µ (cf. [1]) defined
by: {

ann = θ0 + (µ+ 2ni)2, ∀n ∈ Z
anm = θ|m−n|, for m 6= n.

The aim is then to determine the values of µ for which (1.4) has a non trivial solution. Some authors
determined such values of µ using an infinite determinant [9]. B. Rossetto provided an algorithm that
allows to calculate the Floquet exponent from the generalization of the notion of the characteristic equation
and of a truncated determinant. On the other hand, B. de Malafosse [2] dealt with equation (1.3) and
studied system (1.4) using special additionnal equations. More recently, B. de Malafosse [1] used the same
method for the study of the Mathieu equation.

This paper is organized as follows. In Section 2 we define the triangle matrix and we recall some results
on infinite bidiagonal matrices and Laplace tranformation operator. Section 3 is devoted to the resolution
of system (1.1). In Subsection 3.1 we consider the case when λ is constant, then in Subsection 3.2 we deal
with the case when the λi are all distincts. In Section 4, we will apply these results to the resolution of
equation (1.2).
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2. Preliminaries

In this paper, we consider infinite lower triangular matrices with nonzero diagonal entries that are called
triangles. An infinite matrix T = (tnk)n,k≥1 is a triangle if and only if tnk = 0 for all k > n and tnn 6= 0 for
all n ≥ 1.

We denote by w the set of all the sequences and by U the set of the sequences u = (un)n≥1 with un 6= 0 for
all n ≥ 1. The matrix T is considered as an operator from w to itself in the following way, for every sequence
x ∈ w which can be written as a column matrix x = (x1, . . . , xn, . . . )

t, we have Tx = (T1 (x) , . . . , Tn (x) , . . . )t

with

Tn (x) =
n∑
k=1

tnkxk for all n ≥ 1.

It is known that every triangle T is invertible and if T−1 denotes its inverse then we have

T
(
T−1x

)
= T−1 (Tx) = x for all x ∈ w. (2.1)

We are interested in solving infinite linear systems represented by

Tx = b (2.2)

for a given b ∈ w where x ∈ w is the unknown. Equation (2.2) is equivalent to

n∑
k=1

tnkxk = bn n = 1, 2, . . .

It can be easily deduced from (2.1) that the unique solution of (2.2) is given by

x = T−1b.

In this paper, we will solve the equation ∆(α, β)x = b where ∆(α, β) is the triangle defined by

∆ (α, β) =


α1 0
−β1 α2

. . .
. . .

−βn−1 αn

0
. . .

. . .


and α = (αn)n≥1 ∈ U and β = (βn)n≥1 ∈ w.

Lemma 2.1. Let α = (αn)n≥1 ∈ U and β = (βn)n≥1 ∈ ω. We have

(∆ (α, β))−1 = C (α, β) = (cnk)n,k≥1 ,

where

cnk =



1

αn
if k = n,

1

αn

n−1∏
i=k

βi
αi

if k < n,

0 otherwise.



A. Fares, A. Ayad, J. Nonlinear Sci. Appl. 5 (2012), 448–458 451

Let ∆ (α) = ∆ (α, α) and C (α) = C (α, α). Then ∆ (α) is the triangle defined by:

∆ (α)nk =


αn for k = n,
−αn−1 for k = n− 1,

0 for k 6= n− 1 and k 6= n (n ≥ 1),

and C (α) is the triangle defined by:

C (α)n,k =

{
1/αn for k ≤ n,
0 otherwise.

Note that C (α) is the inverse of ∆ (α).
Let e ∈ U , defined by en = 1 for all n ≥ 1. Then ∆ = ∆ (e) is the well known operator of the

first-difference defined by
∆n(x) = xn − xn−1 for all n ≥ 1,

with the convention x0 = 0. Recall that the operator ∆ is invertible and its inverse is usually written
Σ = C (e).

Finally, we recall some properties on Laplace transformations that are useful in the sequel. For a function
f of one variable t, we define the Laplace transformation of f as follows:

F (p) =

∫ +∞

0
f(t) e−ptdt,

where p ∈ C is a new variable. We denote by £ : f 7−→ F , the Laplace operator.

Lemma 2.2. Let £−1 be the inverse mapping of £. Let c ∈ R and f be a function of one variable t. Then
the following properties hold:

1. £ and £−1 are linear operators.

2. £(c) = c/p.

3. £(f ′(t)) = p£(f(t))− f(0).

4. For all m ∈ N,

£−1
( 1

(p− c)m
)

=
tm−1ect

(m− 1)!
.

3. The equation x′ (t) = C (λ)x (t) + b

Let λ = (λn)n≥1 ∈ U be a sequence. In this section, we are interested in the study of the equation:{
x′ (t) = C (λ)x (t) + b,
x (0) = x0,

(3.1)

where x0 = (an)n≥1 and b = (bn)n≥1 are two given sequences.
In the sequel, we will divide our study into two cases:

• Case where λn = c 6= 0 for all n ≥ 1.

• Case where λn (n ≥ 1) are pairwisely distinct.
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3.1. The equation x′ (t) = 1
cΣx(t) + b

If λn = c 6= 0 for all n ≥ 1 then C(λ) = 1
cΣ, where Σ = C(e), en = 1 for all n ≥ 1 and Σ−1 = ∆ is the

operator of the first-difference.

The main result of this subsection is stated in the following theorem:

Theorem 3.1. Infinite differential system (3.1) has a unique solution which is given for each n ≥ 1, by

xn (t) = et/c
n∑
k=1

∆k(x0)
n−k∑
s=0

Csn−k
1

css!
ts

+et/c
n∑
k=1

∆k(b)
n−k−1∑
s=0

Csn−k−1
1

cs(s+ 1)!
ts+1.

where ∆k(x0) = ak − ak−1 and ∆k(b) = bk − bk−1 for all k ≥ 1 with the convention that a0 = b0 = 0.

Proof. Multiply equation (3.1) by c, and apply ∆ to each member of the first equation, we obtain{
c∆x′(t) = x(t) + c∆b
x (0) = x0,

that is the following infinite linear system:{
c x′n(t)− c x′n−1(t) = xn(t) + c∆n(b)

xn(0) = an, n = 1, 2, . . .
(3.2)

where x′0(t) = 0, b0 = 0 and ∆n(b) = bn − bn−1 for all n ≥ 1.
By applying Laplace operator to equations (3.2), we get:

(c p− 1)Xn − c pXn−1 = c
(

∆n(x0) +
∆n(b)

p

)
, n = 1, 2, . . . (3.3)

where Xn = Xn (p) = £ (xn (t)), ∆n(x0) = an − an−1, with the convention that a0 = 0 and X0 = 0.
Equations (3.3) are equivalent to the following linear system:

∆ (c p− 1, c p)X = B

where Xt = (Xn)n≥1, B
t = (Bn)n≥1 and

Bn = c
(

∆n(x0) +
∆n(b)

p

)
, n ≥ 1

and ∆ (c p− 1, c p) is the triangle

∆ (c p− 1, c p) =


c p− 1
−c p c p− 1 0

. .
0 −c p c p− 1

. .

 .

So by Lemma 2.1 we obtain:

∆ (c p− 1, c p)−1 =



1
c p−1
c p

(c p−1)2
1

c p−1 0

. . .
(c p)n−1

(c p−1)n . c p

(c p−1)2
1

c p−1
. . . . .

 .
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This means that [
∆ (c p− 1, c p)−1

]
n,k

=
(c p)n−k

(c p− 1)n−k+1
for k ≤ n;

using Newton’s formula we have

(c p)n−k = (c p− 1 + 1)n−k =

n−k∑
i=0

Cin−k (c p− 1)i ,

then we have

Xn =

n∑
k=1

(c p)n−k

(c p− 1)n−k+1
Bk

=

n∑
k=1

c
(

∆k(x0) +
∆k(b)

p

) (c p)n−k

(c p− 1)n−k+1

=
n∑
k=1

c∆k(x0)
(c p)n−k

(c p− 1)n−k+1
+

n∑
k=1

c

(
∆k(b)

p

)
(c p)n−k

(c p− 1)n−k+1

=
n∑
k=1

c∆k(x0)
(c p)n−k

(c p− 1)n−k+1
+

n∑
k=1

c2∆k(b)
(c p)n−k−1

(c p− 1)n−k+1

=
n∑
k=1

c∆k(x0)

∑n−k
i=0 C

i
n−k (c p− 1)i

(c p− 1)n−k+1
+

n∑
k=1

c2∆k(b)

∑n−k−1
i=0 Cin−k−1 (c p− 1)i

(c p− 1)n−k+1

=
n∑
k=1

c∆k(x0)
n−k∑
i=0

Cin−k
1

(c p− 1)n−k−i+1

+

n∑
k=1

c2∆k(b)

n−k−1∑
i=0

Cin−k−1
1

(c p− 1)n−k−i+1

=

n∑
k=1

c∆k(x0)

n−k∑
i=0

Cin−k
1[

c
(
p− 1

c

)]n−k−i+1

+

n∑
k=1

c2∆k(b)

n−k−1∑
i=0

Cin−k−1
1[

c
(
p− 1

c

)]n−k−i+1
.

Since we have

£−1

[
1[

c
(
p− 1

c

)]n−k−i+1

]
=

1

cn−k−i+1

t
n−k−i

(n− k − i)!
et/c,
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then

xn (t) = £−1 [Xn]

= £−1

[
n∑
k=1

c∆k(x0)

n−k∑
i=0

Cin−k
1[

c
(
p− 1

c

)]n−k−i+1

]

+£−1

[
n∑
k=1

c2∆k(b)
n−k−1∑
i=0

Cin−k−1
1[

c
(
p− 1

c

)]n−k−i+1

]

= et/c
n∑
k=1

∆k(x0)
n−k∑
i=0

Cin−k
1

cn−k−i
t
n−k−i

(n− k − i)!

+c et/c
n∑
k=1

∆k(b)
n−k−1∑
i=0

Cin−k−1
1

cn−k−i
t
n−k−i

(n− k − i)!
.

Now let s = n− k − i. Since Cn−k−sn−k = Csn−k, we obtain

xn (t) = et/c
n∑
k=1

∆k(x0)
n−k∑
s=0

Csn−k
1

css!
ts

+c et/c
n∑
k=1

∆k(b)

n−k−1∑
s=0

Csn−k−1
1

cs+1(s+ 1)!
ts+1.

This concludes the proof.

3.2. The equation x′ (t) = C(λ)x (t) + b where all λn are pairwisely distinct

Equation (3.1) is equivalent to the following infinite linear system:{
λn x

′
n (t) =

∑n
k=1 xk (t) + bn,

xn(0) = an, n = 1, 2, . . .
(3.4)

In the sequel, we need the following lemma:

Lemma 3.2. Let k, n ∈ N such that k < n. Let αk, . . . , αn ∈ R pairwisely distinct real numbers. Then the
decomposition of the function

F (z) =
1

z − αn

n−1∏
j=k

z

z − αj

into simple fractions is given by:

F (z) =
n∑
j=k

Aj
z − αj

,

where for all k ≤ j ≤ n,

Aj = αn−kj

n∏
i=k,i6=j

1

αj − αi
.

Proof. We have

An = lim
z→αn

(z − αn)F (z) =
n−1∏
j=k

αn
αn − αj

= αn−kn

n−1∏
j=k

1

αn − αj

and for all k ≤ j ≤ n− 1,

Aj = lim
z→αj

(z − αj)F (z) =
αn−kj

αj − αn

n−1∏
i=k,i6=j

1

αj − αi
= αn−kj

n∏
i=k,i6=j

1

αj − αi



A. Fares, A. Ayad, J. Nonlinear Sci. Appl. 5 (2012), 448–458 455

Theorem 3.3. Infinite linear system (3.4) has a unique solution which is given for each n ≥ 1, by

xn(t) =
1

λn

[
Bne

t
λn +

n−1∑
k=1

Bk

n∑
j=k

Aje
t
λj

]
−∆(λ)n(b), (3.5)

where
Bk = ∆(λ)k

(
x0 + ∆(λ)b

)
for 1 ≤ k ≤ n

and

Aj =

n∏
i=k,i6=j

λi
λi − λj

for k ≤ j ≤ n.

Proof. Since C(λ)−1 = ∆(λ), then equation (3.1) is equivalent to the equation:

x′ (t) = C (λ)
[
x (t) + ∆ (λ) b

]
.

Putting y (t) = x (t) + ∆ (λ) b, then we can easily see that equation (3.1) is equivalent to the equation:

y′ (t) = C (λ) y (t) ,

and then by applying ∆(λ), we get {
∆ (λ) y′ (t)− y (t) = 0,
y(0) = y0,

(3.6)

where y0 = x0 + ∆(λ)b. Then equation (3.6) is equivalent to the following infinite differential linear system:{
λny

′
n(t)− λn−1y′n−1(t)− yn(t) = 0

yn(0) = cn, n = 1, 2, . . . ,
(3.7)

where cn = an + ∆(λ)n(b) and ∆(λ)n(b) = λnbn − λn−1bn−1 for all n ≥ 1, with the convention that
λ0 = b0 = 0 and y′0(t) = 0.
Applying Laplace transform to equations (3.7), we get:

(pλn − 1)Yn − pλn−1Yn−1 = ∆(λ)n(y0) n = 1, 2, . . . (3.8)

where Yn = Yn (p) = £[yn (t)] and ∆(λ)n(y0) = λncn − λn−1cn−1 for all n ≥ 1, with the convention that
c0 = 0 and Y0 = 0. Equations (3.8) are equivalent to the following infinite linear system:

∆(pλ− 1, pλ)Y = B,

where Y t = (Yn)n≥1, B
t = (Bn)n≥1 and

Bn = ∆(λ)n(y0), n ≥ 1.

So by Lemma 2.1 we obtain:

∆(pλ− 1, pλ)−1 =



1
pλ1−1
. 1

pλ2−1 0

. . .

. 1
pλn−1

n−1∏
j=k

pλj
pλj−1 . 1

pλn−1

. .


,
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and then Y = ∆(pλ− 1, pλ)−1B, thus

Yn =
n−1∑
k=1

1

pλn − 1

n−1∏
j=k

pλj
pλj − 1

Bk +
Bn

pλn − 1

=
1

λn

n∑
k=1

BkFk (p) , (3.9)

with

Fk (p) =


1

p− 1
λn

[
n−1∏
j=k

p

p− 1
λj

]
for 1 ≤ k ≤ n− 1,

1
p− 1

λn

for k = n.

For 1 ≤ k ≤ n− 1, the decomposition of Fk(p) into simple fractions is given by Lemma 3.2 (for αj = 1/λj)
as follows:

Fk(p) =
n∑
j=k

Aj

p− 1
λj

,

where for all k ≤ j ≤ n,

Aj =
n∏

i=k,i6=j

λi
λi − λj

.

Applying £−1 on (3.9), we get:

yn (t) = £−1(Yn(p)) =
1

λn

n∑
k=1

Bk£−1(Fk(p)).

But

£−1(Fk(p)) =


∑n

j=k Aje
t
λj for 1 ≤ k ≤ n− 1,

e
t
λn for k = n.

Then

yn(t) =
1

λn

[
Bne

t
λn +

n−1∑
k=1

Bk

n∑
j=k

Aje
t
λj

]
.

Using the identity xn(t) = yn(t)−∆(λ)n(b), we get:

xn(t) =
1

λn

[
Bne

t
λn +

n−1∑
k=1

Bk

n∑
j=k

Aje
t
λj

]
−∆(λ)n(b),

that is (3.5).

4. Application to the equation x′ (t) = Nq x(t) + b

In this section, we will apply the previous results to the case when T = Nq is the operator of weighted
mean martix. Recall that Nq is the triangle defined by

[
Nq
]
nm

=

{ qm
Qn

for m ≤ n,

0 otherwise,
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where q = (qn)n≥1 is a positive sequence, Q = (Qn)n≥1 is the sequence defined by Qn =
∑n

m=1 qm for all
n ≥ 1. We can easily see that Nq = D1/QΣDq where Dq (resp. D1/Q) is the diagonal matrix whose the
n-th entry is equal to qn (resp. the diagonal matrix whose the n-th entry is equal to 1/Qn). Note that the
equation {

x′ (t) = Nq x (t) + b,
x(0) = x0,

(4.1)

is equivalent to the following infinite differential system:{
x′n (t) = 1

Qn

∑n
k=1 qkxk (t) + bn

xn(0) = an, n = 1, 2, . . .

Theorem 4.1. Equation (4.1) has a unique solution which is given for each n ≥ 1, by

xn(t) =
1

Qn

[
Bne

qn
Qn

t
+

n−1∑
k=1

Bk

n∑
j=k

Aje
qj
Qj
t

]
− ∆(Q)n(b)

qn
, (4.2)

where

Bk = ∆(Q)k(x0) + ∆
(Q
q

)
k

(
∆(Q)b

)
for 1 ≤ k ≤ n,

and

Aj =

n∏
i=k,i6=j

Qi
Qi − qi

qj
Qj

for k ≤ j ≤ n.

Proof. Let y(t) = Dq x(t), then y′(t) = Dq x
′(t). Since Nq = D1/QΣDq and DqD1/Q = Dq/Q, then equa-

tion (4.1) is equivalent to {
y′(t) = C(λ)y(t) +Dq b,
y(0) = Dq x0,

(4.3)

taking into account that Dq/QΣ = C(λ), where λ = Q/q. Applying Theorem 3.3 to equation (4.3), we get:

yn(t) =
qn
Qn

[
Bne

qn
Qn

t
+
n−1∑
k=1

Bk

n∑
j=k

Aje
qj
Qj
t

]
−∆(Q)n(b),

where

Bk = ∆
(Q
q

)
k

(
Dqx0 + ∆

(Q
q

)
Dqb

)

= ∆(Q)k(x0) + ∆
(Q
q

)
k

(
∆(Q)b

)
for 1 ≤ k ≤ n,

and

Aj =

n∏
i=k,i6=j

Qi
Qi − qi

qj
Qj

for k ≤ j ≤ n.

Since x(t) = D1/q y(t), then for all n ≥ 1, xn(t) = 1
qn
yn(t) and hence the unique solution of equation (4.1)

is given by Formula (4.2).
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