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Abstract

This paper provides an overview on existing algorithms for factoring
polynomials over global fields with their complexity analysis from our
experiments on the subject. It relies on our studies of the complexity of
factoring parametric multivariate polynomials that is used for solving
parametric polynomial systems in our PhD thesis. It is intended to
be useful to two groups of people: those who wish to know what work
has been done and those who would like to do work in the field. It
contains an extensive bibliography to assist readers in exploring the field
in more depth. The paper presents different methods and techniques
used for computing irreducible factors of polynomials depending on the
global field: Q, finite fields or algebraic extensions. We describe also
our algorithm for factoring parametric multivariate polynomials.
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1 Introduction

Polynomial factorization is one of the main problems in algebra and symbolic
computations. It goes back to Newton, Gauss, Fermat, Kronecker, Hensel and
others. Factoring polynomials reduces them to simple objects (i.e., polynomi-
als with less degrees) that are easy to manipulate for symbolic computations as
the computation of greatest common divisors of polynomials, the resolution of
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algebraic systems of polynomial equations and the decomposition of algebraic
varieties into irreducible components [12, 14, 27] (e.g., the irreducible factors of
a polynomial define the irreducible components of the hypersurface defined by
this polynomial). The factorization of polynomials combined with the Buch-
berger’s algorithm [7, 17, 18] give also algorithms for primary decompositions
of polynomial ideals [25, 26].

The paper surveys the complexity of existing algorithms for factoring poly-
nomials over global fields going from the rational numbers field to algebraic
extension fields. It is organized as follows: Section 2 is dedicated to the factor-
ization of polynomials without parameters with coefficients in Q (Section 2.1),
in finite fields (Section 2.2), in algebraic extensions (Section 2.3). Absolute
factorization of polynomials is given in Section 2.4. Section 3 describes an
algorithm for factoring parametric multivariate polynomials [1, 2].

2 Factoring polynomials without parameters

Let K be a global field and f ∈ K[X1, . . . , Xn] be a multivariate polynomial in
the variables X1, . . . , Xn with coefficients in K. We say that f is irreducible in
K[X1, . . . , Xn] (i.e., irreducible over K) if there is no non-constant polynomials
f1, f2 in K[X1, . . . , Xn] such that f = f1f2. It is well-known that f has a
unique (up to factors in K∗) decomposition into a product of a finite number
of irreducible polynomials f1, . . . , fs over K. This is called the factorization of
f over K.

In this section, we are looking for efficient algorithms that compute the
irreducible factors of f . There are many algorithms depending on the ground
field K. For the complexity analysis aims, we suppose that the degree of f is
less than an integer d.

2.1 Factoring over the field of rational numbers

Kronecker has factored univariate polynomials with integer coefficients by an
algorithm with exponential complexity in d (see e.g [31, 42]).

Based on Berlekamp’s algorithm [4, 5] and Hensel’s Lemma (see e.g., [50, 45,
44, 14, 27, 49, 42]), Zassenhaus (see e.g., [50, 42]) has described an algorithm
for factoring polynomials in Z[X] but also with exponential complexity in the
size of the input polynomial.

The first algorithm of factorization of univariate polynomials aver Q with
polynomial complexity in the size of the input polynomial was published in
1982 in [38] by A.K. Lenstra, H.W. Jr. Lenstra and L. Lovasz (the LLL-
algorithm). The complexity bound of this algorithm is d12 + d9 log3 h where
h is the binary length of the polynomial to be factored. It is based on the
computation of minimal vectors of lattices.
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In 1982, Chistov and Grigoryev have used the LLL-algorithm with a multi-
variate version of Hensel’s Lemma to get a polynomial algorithm for factoring
multivariate polynomials with coefficients in Q [11] (see also [12, 14, 27]). In the
same year, Kaltofen [31, 32, 34] has presented a deterministic polynomial-time
algorithm of reductions from multivariate to univariate integral polynomial
factorization. This algorithm has polynomial complexity in d and the binary
length of the input polynomial when the number of variables is fixed.

In 2002, Van Hoeij [30] has designed a new algorithm for factoring polyno-
mials over Q by reducing the problem to a knapsack one using power sums. In
2004, Belabas [3] has generalized van Hoeij’s algorithm to number fields, but
these two papers stated no complexity bound.

Recently, in 2003, Gao [23] has described a probabilistic algorithm for fac-
toring bivariate polynomials over Q. This algorithm is based on the resolution
of large linear systems and on the factorization of univariate polynomials over
Q. Its complexity is bounded by Õ(d5).

2.2 Factoring over finite fields

In the late 60s, Berlekamp [4, 5] has described a probabilistic algorithm which
factorizes univariate polynomials with coefficients in a finite field with q ele-
ments by linear algebra methods. Its complexity bound is O(d3 log q), being
polynomial in the size of the input polynomial (see also [42]).

In 1982, Chistov and Grigoryev [11, 27, 14, 12] have presented polynomial-
time algorithms for factoring multivariate polynomials with coefficients in a
finite field Fq. Their complexity bound is (dn log q)O(1). These algorithms
are based on the computation of minimal vectors of lattices as in the LLL-
algorithm [38].

In 1985, Von zur Gathen and Kaltofen [48] have got two polynomial-time
algorithms for factoring polynomials in two variables with coefficients in Fq:
the first algorithm is probabilistic with complexity (d log q)O(1) and the sec-
ond algorithm is deterministic with complexity (dq)O(1). Later in the same
year, A.K. Lenstra has obtained the same complexity bound [40] for factoring
multivariate polynomials with coefficients in a finite field.

In 1995, Kaltofen and Shoup [35] have improved the complexity of the
factorization of univariate polynomials with coefficients in Fq. They found
a complexity bound of O(d1.815 log q) by a family of probabilistic algorithms.
Later in 1997 [36], they have given a lower bound of order O(d log2 q).

In 2001, Flajolet et. al. [21] have obtained a complete analysis of a poly-
nomial factorization algorithm over finite fields.

In 2002, Noro et. al. [46] have designed a practical way to factorize poly-
nomials over finite fields using Gröbner bases [7, 17, 18] techniques.

Recently, in 2004, an improvement of the exponent O(1) of these complexity
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bounds is realized in [6] by a deterministic algorithm with complexity Õ(dω+1)
and a probabilistic algorithm with complexity Õ(dω) for factoring bivariate
polynomials with coefficients in Fq where ω is the linear algebra exponent [49]
(i.e., the multiplication of two n × n matrices is done with nω elementary
operations in the ground field where 2 < ω ≤ 3 (ω ≤ 2.376 in [15])).

2.3 Factoring over algebraic extensions

When the ground field K is a finite extension of purely transcendental ex-
tension of its prime subfield (i.e., K = H(T1, . . . , Tl)[η] where H = Q if
char(K) = 0 and H ⊃ Fp is a finite extension of Fp if char(K) = p > 0, the
variables T1, . . . , Tl are algebraically independant over H and η is algebraic,
separable over the field H(T1, . . . , Tl)), Chistov and Grigoryev [11, 27, 14, 12]
have described a polynomial-time algorithm for factoring multivariate polyno-
mials with coefficients in K.

When K = Q[η] where η is algebraic over Q with minimal polynomial
φ ∈ Q[Z] (where Z is a new variable). The factorization of a multivariate
polynomial f ∈ Z[η][X1, . . . , Xn] is done also in polynomial-time in the size of
f [39, 34, 37, 41]. The coefficients of the irreducible factors are represented
by polynomials in η of degrees < deg(φ). This complexity is bounded by
(h deg(φ)dn)O(1) where h is the maximal binary length of the coefficients of f
in Z.

2.4 Absolute factorization

A polynomial f ∈ K[X1, . . . , Xn] is absolutely irreducible if it is irreducible
over an algebraic closure K of K, this is equivalent to that f is irreducible
over all algebraic extensions of K. The absolute factorization of f is its unique
decomposition into a product of absolutely irreducible factors. Two strategies
are adopted for the absolute factorization of polynomials:

2.4.1 Symbolic computations

This strategy aims to compute a primitive extension K[α] of K represented
by the minimal polynomial of α over K that contains all coefficients of all the
absolutely irreducible factors of f .

In 1981, Heintz and Sieveking [29] have given a first polynomial-time test
for absolute factorization of polynomials.

In 1983, Chistov and Grigoryev [12] (see also [14]) have proposed for the
first time a polynomial-time algorithm of reductions from absolute factoriza-
tion to factorization over the ground field K. This algorithm is combined with
another polynomial-time algorithm of factorization over K (where K is a finite
extension of purely transcendental extension of its prime subfield as above) to
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get a polynomial-time algorithm for absolute factorizations. The complexity
of their algorithm is polynomial in dn2

.

In 1985, Kaltofen [33] has computed the minimal polynomial of a given
root of f in K. This polynomial is in fact an absolutely irreducible factor of
f .

In 1987 [19] and 1991 [20], Duval has used geometric methods on the hy-
persurface defined by f to get algorithms for its absolute factorization.

In 2003, Gao [23] has described a probabilistic algorithm for absolute fac-
torizations of bivariate polynomials with coefficients in a field of characteristic
zero or of characteristic p > d(d − 1). This algorithm is based on the resolu-
tion of large linear systems and on the factorization of univariate polynomials
over the ground field. Its complexity is bounded by Õ(d5). This bound was
improved later in 2007 by Chèze and Lecerf [9] (see also [8]). They have shown
two algorithms: the first is deterministic with complexity Õ(d4) and the second
algorithm is probabilistic with sub-quadratic complexity Õ(d(ω+3)/2) in the size
d2 of the input polynomial. These algorithms are implemented in Magma1 and
they are efficient in practice [8].

2.4.2 Numeric computations

Numeric computation strategy consists to compute an approximation of the co-
efficients of the absolutely irreducible factors of f when K = Q. Let f1, . . . , fs

be the absolutely irreducible factors of f in Q[X,Y ] (i.e., the exact factors)
and f̃1, . . . , f̃s ∈ R[X, Y ]. We say that f ≈ f̃1 · · · f̃s is an approximate absolute
factorization of f with precision ε > 0 if for all 1 ≤ i ≤ s, the coefficients
of f̃i are numeric approximations of those of fi with precision ε, i.e., for all
1 ≤ i ≤ s, ‖ fi − f̃i ‖∞< ε where ‖ g ‖∞ is the maximal absolute value of the
coefficients of g ∈ R[X, Y ].

Chèze and Galligo [10, 8] have established an algorithm which constructs
exact factors from approximate factors. There are many other geometric algo-
rithms that compute numeric approximate absolute factorization of bivariate
polynomials with coefficients in Q [22, 16, 8, 24, 47, 10].

3 Factoring polynomials with parameters

Let K be a global field and F ∈ K[u1, . . . , ur][X1, . . . , Xn] be a parametric mul-
tivariate polynomial in the variables X1, . . . , Xn with polynomial coefficients in
the variables u = (u1, . . . , ur) (the parameters) over K. Our goal is to compute
the absolute factorization of F uniformly for different values of the parameters

1http://www.math.uvsq.fr/~lecerf/software/absfact/index.html
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in the set P = K
r
which we call the parameters space (see Example 3.1 and be-

low). For the complexity analysis aims, we suppose that the degree of F w.r.t.
X1, . . . , Xn is less than d. In the sequel, let us adopt the following notation: for
a polynomial g ∈ K(u1, . . . , ur)[X1, . . . , Xn] and a value a = (a1, . . . , ar) ∈ P
of the parameters, we denote by g(a) the polynomial of K[X1, . . . , Xn] which is
obtained by specialization of u by a in the coefficients of g if their denominators
do not vanish on a, i.e., g(a) = g(a1, . . . , ar, X1, . . . , Xn).

Example 3.1 Let the following parametric bivariate polynomial

F = (u2 + v)X2 + uXY + vX + uY + v ∈ Q[u, v][X, Y ]

One can decompose C2 into three sets V1,V2 and V3 as follows:{ V1 = {u2 + v = 0}
F = (X + 1)(uY + v)

,

{ V2 = {u2 + v �= 0, u �= 0}
F is absolutely irreducible

,

{ V3 = {u = 0, v �= 0}
F = v(X − C)(X − C2)

This reads as follows: for any (a, b) ∈ V1, the absolute factorization of F (a,b)

is given by F (a,b) = (X + 1)(aY + b). For any (a, b) ∈ V2, F (a,b) is absolutely
irreducible. For any (a, b) ∈ V3, there exists c, a cubic primitive root of the
unity (i.e., a root of the polynomial χ = C3 − 1 where C is a new variable
according to the representation below) such that F (a,b) = b(X − c)(X − c2) is
the absolute factorization of F (a,b).

In 2004 [1] (see also [2]), we have described an algorithm which computes
a finite partition of P into constructible sets V such that the absolute factor-
ization of F is given uniformly in each constructible set V, i.e., the algorithm
computes s polynomials G1, . . . , Gs ∈ K(C, u1, . . . , ur)[X1, . . . , Xn] (where C
is a new variable), and a polynomial χ ∈ K(u1, . . . , ur)[C] which satisfy the
following property:

• For any a ∈ V, there exists c ∈ K, a root of χ(a) ∈ K[C] such that the
denominators of the coefficients of χ and Gj do not vanish on a and (c, a)
respectively and the absolute factorization of F (a) is given by

F (a) =
∏

1≤j≤s

G
(c,a)
j , G

(c,a)
j is absolutely irreducible.

The parametric polynomial χ defines the extension of K where the coeffi-
cients of the factors belong to. In addition, the algorithm computes bounds on
the degrees and the binary lengths of the output polynomials. Its complexity
is single exponential in n, r and d. This algorithm is based on a paramet-
ric version of Hensel’s Lemma and an algorithm of quantifier elimination in
the theory of algebraically closed field [13] in order to reduce the problem of
finding absolute irreducible factors to the problem of representing solutions of
zero-dimensional parametric polynomial systems [28, 43].
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4 Conclusion

In this paper, we have presented an overview on the complexity of factoring
polynomials over several ground fields: Q, finite fields and algebraic extension
fields. We have shown algorithms for absolute factorization of polynomials
by symbolic and numeric computations. Different methods for representing
irreducible factors of polynomials are given with their complexity analysis for
the parametric and the non-parametric case. In anyway, this paper reflects
our point of view on the problem and is not considered as an exhaustive paper
on the historic of the problem.
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[7] B. Buchberger, Gröbner Bases: An algorithmic method in polynomial ideal
theory, in Multidimensional System Theory (N.K.Bose et. al., Eds), Rei-
del, Dordrecht (1985), 374 - 383.
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