Parametric Euclidean Algorithm

Ali Ayad

Discrete Mathematics - EDST - Lebanese University
Dimacos - November 14, 2012

The problem

Let $f_{1}, f_{2} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$ be parametric univariate polynomials where u_{1}, \ldots, u_{t} are the parameters.

- $\mathcal{P}=\overline{\mathbb{Q}}^{t}$: the parameters space
- For a polynomial $g \in \mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)[X]$ and a value

$$
\begin{aligned}
& a=\left(a_{1}, \ldots, a_{t}\right) \in \mathcal{P} \text {, we denote by } G \text { the polynomial } \\
& G=g\left(a_{1}, \ldots, a_{t}, X\right) \in \overline{\mathbb{Q}}[X] .
\end{aligned}
$$

The Goal

Calculate GCD of F_{1} and F_{2} in $\overline{\mathbb{Q}}[X]$ in a uniform way for $a \in \mathcal{P}$, i.e., find constructible subsets W_{1}, \ldots, W_{N} of \mathcal{P} verifying :

- Each W_{i} is equipped with a parametric polynomial $g_{i} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$ such that the polynomial G_{i} is a gcd of F_{1} and F_{2} in $\overline{\mathbb{Q}}[X]$ for all $a \in W_{i}$.
- W_{1}, \ldots, W_{N} form a partition of \mathcal{P}.

Example

Let $f_{1}=X^{3}+u X^{2}+v X+1$ and $f_{2}=X^{2}-u X-1$. Then $\mathcal{P}=W_{1} \cup W_{2} \cup W_{3} \cup W_{4}$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
W_{1}=\left\{2 u^{2}+v+1 \neq 0, g_{1} \neq 0\right\}, \\
g_{1}=2 u^{3}-2 u^{2} v+2 u^{2}-v^{2}+u v+5 u-2 v,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{2}=\left\{2 u^{2}+v+1 \neq 0, g_{1}=0\right\}, \\
g_{2}=\left(2 u^{2}+v+1\right) X+2 u+1,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{3}=\left\{2 u^{2}+v+1=0,2 u+1 \neq 0\right\}, \\
g_{3}=2 u+1,
\end{array}\right. \\
& \left\{\begin{array}{l}
W_{4}=\left\{2 u^{2}+v+1=0,2 u+1=0\right\}, \\
g_{4}=f_{2} .
\end{array}\right.
\end{aligned}
$$

The problem

The Euclidean algorithm

- Consider $f_{1}, f_{2} \in \mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)[X]$
- Compute the sequence

$$
\left\{r_{0}, r_{1}, \ldots, r_{s}, r_{s+1}=0\right\} \subset \mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)[X]
$$

of remainders by successive euclidean divisions of the polynomials $r_{0}=f_{1}$ and $r_{1}=f_{2}$ in $\mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)[X]$.

- r_{s} is a gcd of f_{1} and f_{2} in $\mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)[X]$.

Two problems

Problem 1

Zeros of the denominators of the coefficients of $r_{0}, r_{1}, \ldots, r_{s}$ in $\mathbb{Q}\left(u_{1}, \ldots, u_{t}\right)$ are not covered.

Problem 2

Even for a value $a \in \mathcal{P}$ which does not vanish any denominator of the coefficients of r_{2}, \ldots, r_{s}, the polynomial $R_{s} \in \overline{\mathbb{Q}}[X]$ is not necessarily a gcd of F_{1} and F_{2}.

The problem : Example

Let

$$
r_{0}=f_{1}=u X^{2}+X-1 \quad \text { and } \quad r_{1}=f_{2}=v X+1
$$

where u and v are parameters. Then

$$
r_{2}=-\frac{1}{v}\left(1-\frac{u}{v}\right)-1 \quad \text { and } \quad r_{3}=0
$$

(1) For arbitrary value of u and for $v=0, R_{2}$ is not defined (Problem 1).
(2) For $(u, v)=(2,1)$, then $R_{2}=0$ and $F_{2}=X+1$ is a gcd of $F_{1}=2 X^{2}+X-1$ and F_{2} (Problem 2).

Avoiding Problem 1 : Pseudo-division

Pseudo-division

Let $f_{1}, f_{2} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X], m_{1}=\operatorname{deg}_{X}\left(f_{1}\right)$ and $m_{2}=\operatorname{deg}_{X}\left(f_{2}\right)$. There exist unique polynomials $q, r \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$ such that

$$
\operatorname{lc}\left(f_{2}\right)^{m_{1}-m_{2}+1} f_{1}=q f_{2}+r
$$

with

$$
r=0 \quad \text { or } \quad \operatorname{deg}_{X}(r)<\operatorname{deg}_{X}\left(f_{2}\right)
$$

q is called the pseudo-quotient and r is the pseudo-remainder (denoted by $\operatorname{Prem}\left(f_{1}, f_{2}\right)$) of the pseudo-division of f_{1} by f_{2}.

Avoiding Problem 1 : Pseudo-division

Sequence of pseudo-remainders

The sequence of pseudo-remainders of successive pseudo-divisions applicated to $\tilde{r}_{0}=f_{1}$ and $\tilde{r}_{1}=f_{2}$ is the sequence

$$
\left\{\tilde{r}_{0}, \tilde{r}_{1}, \ldots, \tilde{r}_{s}, \tilde{r}_{s+1}=0\right\} \subset \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]
$$

where $\tilde{r}_{i}=\operatorname{Prem}\left(\tilde{r}_{i-2}, \tilde{r}_{i-1}\right)$

Pseudo-remainders

- \tilde{r}_{s} is a gcd of f_{1} and f_{2} in $\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$.
- For any $a \in \mathcal{P}$ which does not vanish any leading coefficient of the polynomials in the sequence, the polynomial $\tilde{R}_{s} \in \overline{\mathbb{Q}}[X]$ is a gcd of F_{1} and F_{2}.

Avoiding Problem 1 : Example

Let

$$
\tilde{r}_{0}=f_{1}=X^{3}+u X^{2}+v X+1 \quad \text { and } \quad \tilde{r}_{1}=f_{2}=X^{2}-u X-1
$$

Then

$$
\left\{\begin{array}{l}
\tilde{r}_{2}=\left(2 u^{2}+v+1\right) X+(2 u+1) \\
\tilde{r}_{3}=2 u^{3}-2 u^{2} v+2 u^{2}-v^{2}+u v+5 u-2 v \\
\tilde{r}_{4}=0
\end{array}\right.
$$

- \tilde{r}_{3} is a gcd of f_{1} and f_{2} in $\mathbb{Q}[u, v][X]$.
- For $(u, v)=(0,0), \tilde{R}_{3}=0$ and $\tilde{R}_{2}=X+1$ is a gcd of $F_{1}=X^{3}+1$ and $F_{2}=X^{2}-1$ (Problem 2).

Avoiding Problem 2 : Truncations

Let $g=g_{m} X^{m}+\cdots+g_{1} X+g_{0} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$.

- For any $0 \leq i \leq m$, the truncation of g at i is

$$
\operatorname{Tr}_{i}(g)=g_{i} X^{i}+\cdots+g_{1} X+g_{0} \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X] .
$$

- The set of truncations of g, is the finite subset of $\mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]:$
$\operatorname{Tr} u(g)= \begin{cases}\{g\} & \text { if } g_{m}=\operatorname{lc}(g) \in \mathbb{Q}, \\ \{g\} \cup \operatorname{Tr} u\left(\operatorname{Tr} u_{m-1}(g)\right) & \text { else. }\end{cases}$
If $g_{i} \notin \mathbb{Q}$ for all $0 \leq i \leq m$, then we add 0 to $\operatorname{Tr} u(g)$.

Avoiding Problem 2 : Truncations

Example

For

$$
\begin{gathered}
g=u X^{4}+u v X^{3}+3 X^{2}-u^{4} X+1 \\
\left\{\begin{array}{l}
\operatorname{Tr} u(g)=\left\{g, \operatorname{Tr}_{3}(g), \operatorname{Tr} u_{2}(g)\right\}, \text { where } \\
\operatorname{Tr} u_{3}(g)=u v X^{3}+3 X^{2}-u^{4} X+1, \\
\operatorname{Tr} u_{2}(g)=3 X^{2}-u^{4} X+1,
\end{array}\right.
\end{gathered}
$$

and for

$$
h=u^{3} X^{2}+u v^{2} X+v^{2}+1
$$

$$
\left\{\begin{array}{l}
\operatorname{Tr} u(h)=\left\{h, \operatorname{Tr} u_{1}(h), \operatorname{Tr} u_{0}(h), 0\right\}, \text { where } \\
\operatorname{Tr} u_{1}(h)=u v^{2} X+v^{2}+1, \\
\operatorname{Tr} u_{0}(h)=v^{2}+1
\end{array}\right.
$$

Tree of pseudo-remainders

For each nonzero polynomial $\tilde{r}_{0} \in \operatorname{Tru}\left(f_{1}\right)$, we associate a tree of pseudo-remainders of \tilde{r}_{0} by f_{2}, denoted by $\operatorname{TPrems}\left(\tilde{r}_{0}, f_{2}\right)$.

- The root of this tree contains \tilde{r}_{0}.
- The sons of \tilde{r}_{0} contain the elements of $\operatorname{Tru}\left(f_{2}\right)$.
- Each node N contains a polynomial $\operatorname{Pol}(N) \in \mathbb{Q}\left[u_{1}, \ldots, u_{t}\right][X]$.
- A node N is a leaf of the tree if $\operatorname{Pol}(N)=0$.
- If N is not a leaf, the sons of N contain the elements of the set of truncations of $\operatorname{Prem}(\operatorname{Pol}(p(N)), \operatorname{Pol}(N))$ where $p(N)$ is the parent of N.

Forest of pseudo-remainders

The set of all the trees associated to the nonzero elements of $\operatorname{Tru}\left(f_{1}\right)$ is called the forest of pseudo-remainders of f_{1} by f_{2}, it is denoted by $T\left(f_{1}, f_{2}\right)$.

Example of forest of pseudo-remainders

Let $f_{1}=X^{3}+u X^{2}+v X+1$ and $f_{2}=X^{2}-u X-1$

Paths of the forest of pseudo-remainders

Let $\tilde{r}_{0} \in \operatorname{Tru}\left(f_{1}\right) \backslash\{0\}$ and $\operatorname{TPrems}\left(\tilde{r}_{0}, f_{2}\right)$ the tree with root contains \tilde{r}_{0}. For each leaf L of $\operatorname{TPrems}\left(\tilde{r}_{0}, f_{2}\right)$, we consider the unique path

$$
P_{L}=\left\{\tilde{r}_{0}, \tilde{r}_{1}, \ldots, \tilde{r}_{s}, \tilde{r}_{s+1}=\operatorname{Pol}(L)=0\right\}
$$

We associate to L a constructible subset W_{L} of \mathcal{P} defined by :

$$
\bigwedge_{2 \leq i \leq s+1}\left[\operatorname{deg}_{x}\left(\tilde{r}_{i}\right)=\operatorname{deg} g_{X}\left(\operatorname{Prem}\left(\tilde{r}_{i-2}, \tilde{r}_{i-1}\right)\right)\right]
$$

Partition of the parameters space

(1) The constructible sets W_{L} where L are the leaves of the forest $T\left(f_{1}, f_{2}\right)$ form a partition of \mathcal{P}.
(2) For every leaf L of $T\left(f_{1}, f_{2}\right)$, the path P_{L} is a parametric pseudo-remainder sequence of f_{1} and f_{2}, i.e., for any $a \in W_{L}$, the set

$$
\left\{\tilde{R}_{0}, \tilde{R}_{1}, \ldots, \tilde{R}_{s}, \tilde{R}_{s+1}=\operatorname{Pol}(L)=0\right\} \subset \overline{\mathbb{Q}}[X]
$$

is the sequence of pseudo-remainders of F_{1} and F_{2}. In particular, $0 \neq \tilde{R}_{s} \in \overline{\mathbb{Q}}[X]$ is a gcd of F_{1} and F_{2}.

